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Applications of randomness such as private key generation and public randomness beacons require small
blocks of certified random bits on demand. Device-independent quantum random number generators can
produce such random bits, but existing quantum-proof protocols and loophole-free implementations suffer
from high latency, requiring many hours to produce any random bits. We demonstrate device-independent
quantum randomness generation from a loophole-free Bell test with a more efficient quantum-proof
protocol, obtaining multiple blocks of 512 random bits with an average experiment time of less than 5 min
per block and with a certified error bounded by 2−64 ≈ 5.42 × 10−20.
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A fundamental feature of quantum mechanics is that
measurements of a quantum system can have random
outcomes even when the system is in a definite, pure state.
By definition, pure states are completely uncorrelated with
every other physical system, which implies that the
measurement outcomes are intrinsically unpredictable by
anyone outside the measured quantum system’s laboratory.
The unpredictability of quantum measurements is exploited
by conventional quantum random number generators
(QRNGs) [1] for obtaining random bits whose distribution
is ideally uniform and independent of other systems. The
use of such QRNGs requires trust in the underlying
quantum devices [2]. A higher level of security is attained
by device-independent quantum random number genera-
tors (DIQRNGs) [3,4] based on loophole-free Bell tests,
where the randomness produced can be certified even with
untrusted quantum devices that may have been manufac-
tured by dishonest parties. The security of a DIQRNG relies
on the physical security of the laboratory to prevent
unwanted information leakage, and on the trust in the
classical systems that record and process the outputs of
quantum devices for randomness generation.
Since the idea of DIQRNGs was introduced in Colbeck’s

thesis [3], manyDIQRNGprotocols have been developed—
for a review, see [5]. These protocols generally exploit
quantum nonlocality to certify entropy but differ in device
requirements, Bell-test configurations, randomness rates,

finite-data efficiencies, and the security levels achieved. We
can classify protocols by whether they are secure in the
presence of classical or quantum side information, in other
words, by whether they are classical or quantum proof.
The first experimentally accessible DIQRNG protocol

was given and implemented by Pironio et al. [6] with a
detection-loophole-free Bell test using entangled ions.
They certified 42 bits of classical-proof entropy with error
bounded by 0.01, where, informally, the error can be
thought of as the probability that the protocol output does
not satisfy the certified claim. This required about one
month of experiment time. To improve this result required
the advent of loophole-free Bell tests and much more
efficient protocols. Such a protocol and experimental
implementation with an optical loophole-free Bell test
was given by Bierhorst et al. [7] and obtained 1024
classical-proof random bits with error 10−12 in 10 min.
There have been three demonstrations of quantum-proof
DIQRNGs, all with photons. The first two were subject to
the locality and freedom-of-choice loopholes [8]. They
obtained 4.6 × 107 random bits with error 10−5 in 111 h [9],
and 6.2 × 105 random bits with error 10−10 in 43 min [10],
respectively. The third was loophole free and obtained
6.2 × 107 random bits with error 10−5 in 96 h [11].
The quantum-proof experiments described above aimed

for good asymptotic rates. To approach the asymptotic rate
requires a very large number of trials to certify a large
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amount of entropy. However, many if not most applications
of certified randomness require only short blocks of fresh
randomness. To address these applications, we consider
instead a standardized request for 512 random bits with
error 2−64 ≈ 5.42 × 10−20 and with minimum delay, or
latency, between the request and delivery of bits satisfying
the request. In this work, we consider only the contribution
of experiment time to latency. The previous quantum-proof
DIQRNG implemented with a loophole-free Bell test [11]
would have required at least 24.1 h to satisfy the stand-
ardized request—see the Supplemental Material (SM) [12].
In this Letter, we reduce the latency required to produce

512 device-independent and quantum-proof random bits
with error 2−64 by orders of magnitude. For this purpose,
here we implement a quantum-proof protocol developed in
the companion paper (CP) [27] with a loophole-free Bell
test. Unlike other demonstrations of quantum-proof
DIQRNGs, we conservatively account for adversarial bias
in the setting choices, and we show repeated fulfillment of
the standardized request. We obtain five successive blocks
of 512 random bits with error 2−64 and with an average
experiment time of less than 5 min per block.
Overview of theory.—We give a high-level description of

the features of our protocol. For formal definitions and
technical details, see the CP [27]. Our protocol is based on
repeated (but not necessarily independent or identical) trials
of a loophole-free Clauser, Horne, Shimony, and Holt
(CHSH) Bell test [28], consisting of a source S and two
measurement stations A and B (see Fig. 2). In each trial, the
source attempts to distribute a pair of entangled photons to
the stations, the protocol randomly chooses binary meas-
urement settings X and Y for the stations, the corresponding
measurements are performed, and the binary outcomes A
and B are recorded. We call Z ¼ XY and C ¼ AB the input
and output of the trial, respectively.
An end-to-end randomness generation protocol starts

with a request for k random bits with error ϵ. The user then
chooses a positive quantity σ (the entropy threshold for
success) and positive errors ϵσ , ϵx (the entropy error and the
extractor error, respectively) whose sum is no more than ϵ.
The quantity σ chosen by the user must satisfy the inequality
σ ≥ kþ 4 log2ðkÞ þ 4 log2ð2=ϵ2xÞ þ 6. This inequality is
sufficient to guarantee that, if the outputs of the experiment
can be proven to have entropy at least σ, then k random bits
can be extracted. (The randomness extractor that we use for
this purpose is Trevisan’s extractor [29] as implemented by
Mauerer, Portmann, and Scholz [30]. We refer to it as the
TMPS extractor—see the SM [12].) The user also needs to
decide the maximum number n of Bell-test trials to run.
For simplicity, we temporarily assume that a fixed number n
of trials will be executed, but in the implementation
as described in a later section we exploit the ability to stop
early.
After fixing the parameters defined in the previous

paragraph, n Bell-test trials are sequentially executed,

and the inputs and outputs are recorded as Z ¼ ðZiÞni¼1

and C ¼ ðCiÞni¼1, where Zi and Ci are the input and output
of the ith trial. The uppercase symbols C, Ci, Z, and Zi are
treated as random variables, and their values are denoted by
the corresponding lowercase symbols. Let E denote the
“environment” of the experiment, including any quantum
side information that could be possessed by an adversary.
The entropy of the outputs C is quantified by the quantum
ϵσ-smooth conditional min-entropy ofC givenZE [31]. We
refer to this quantity as the output entropy. The user can
estimate the output entropy as described in the next section
and check whether that estimate is at least σ. If not, the
protocol fails and a binary variable P is set to P ¼ 0;
otherwise, the protocol succeeds and P ¼ 1.
When the protocol succeeds, we apply the TMPS

extractor [30] to extract k random bits with error ϵ. The
TMPS extractor is a classical algorithm that is applied to
the outputsC as well as a random seed S, and produces a bit
string R. The final state of the protocol then consists of the
classical variables RSZP and the quantum system E. In
the CP [27], we prove that the protocol is ϵ sound in the
following sense: The error ϵ is an upper bound on the
product of the success probability and the purified distance
[32] between the actual state of RSZE conditional on the
success event P ¼ 1 and an ideal state of RSZE, according
to which RS is uniformly random and independent of ZE.
For the protocol to be useful, it is necessary that the
probability of success in the actual implementation can be
close to 1, a property referred to as completeness. With
properly configured quantum devices, it is possible to make
this probability exponentially close to 1 by increasing the
number of trials executed. Soundness and completeness
imply formal security of the protocol.
Estimating entropy.—In the CP [27], we develop the

approach of certifying entropy by “quantum estimation
factors” (QEFs), a general technique that generalizes
previous certification techniques against quantum side
information [33,34]. The construction of QEFs requires
first defining a notion of models. The “model” for an
experiment is the set of all possible final states that can
occur at the end of the experiment. A final state can be
written as ρCZE ¼ P

cz jczihczj ⊗ ρEðczÞ, where ρEðczÞ
is the unnormalized state of E given results cz.
Given the state ρCZE, we characterize the unpredictability

of the outputs c given the system E and the inputs z by the
sandwiched Rényi power, denoted by R1þβ½ρEðczÞjρEðzÞ�
where β > 0 and ρEðzÞ ¼

P
c ρEðczÞ (see the SM [12] for

the explicit expression). AQEFwith a positive power β for a
sequence of n trials is a non-negative function T of random
variables CZ such that for all states ρCZE in the model, T
satisfies the inequality

X

cz

TðczÞR1þβ½ρEðczÞjρEðzÞ� ≤ 1:
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Informally, one main result in the CP [27] is that if at the
conclusion of the experiment the variable log2ðTÞ=β takes a
value at least h for some h > 0, then the output entropy (in
bits) must be at least h − log2ð2=ϵ2σÞ=β no matter which
particular state in the model describes the experiment.
Hence, for estimating entropy it suffices to construct QEFs.
In practice, the model for a sequence of trials is

constructed as a chain of models for each individual trial.
QEFs then satisfy a chaining property: If FiðCiZiÞ is a QEF
with power β for the ith trial, then the productQ

n
i¼1 FiðCiZiÞ is a QEF with power β for the sequence

of n trials. To construct the QEF TðCZÞ, we use this
property. Moreover, since the model for each trial of our
experiment is identical, we always take the same QEF for
each executed trial. The CP [27] contains general tech-
niques for constructing models and QEFs, and the SM [12]
contains the details of constructing models and QEFs for
each trial of our experiment.
Experiment.—Our setup is similar to those reported in

Refs. [7,35]. A pair of polarization-entangled photons are
generated through the process of spontaneous parametric
down-conversion and then distributed via optical fiber to
Alice and Bob (see Fig. 1). At each lab of Alice and Bob, a
fast QRNG with parity-bit randomness extraction [36] is
used to randomly switch a Pockels cell-based polarization
analyzer (see Fig. 2). Alice’s polarization measurement
angles, relative to a vertical polarizer, are a ¼ 4.1° and

a0 ¼ 25.5°, and Bob’s are b ¼ −a and b0 ¼ −a0. These
measurement angles, along with the nonmaximally
entangled state prepared in Fig. 1, are chosen based on
numerical simulations of our setup to achieve an optimal
Bell violation. The photons are then detected in each lab
using superconducting nanowire single-photon detectors
with an efficiency greater than 90% [37]. The total system
efficiencies for Alice and Bob are 76.2� 0.3% and
75.8� 0.3%, allowing the detection loophole to be closed.
With the configuration detailed in Fig. 2, we can also close
the locality loophole.
In each trial, Alice’s andBob’s setting choicesX andY are

made with random bits whose deviation from uniform is

FIG. 1. Diagram of the entangled photon-pair source. A
775-nm-wavelength picosecond Ti:sapphire laser operating at a
79.3 MHz repetition rate pumps a 20-mm-long periodically poled
potassium titanyl phosphate (PPKTP) crystal, to produce degen-
erate photons at 1550 nm with a per-pulse probability of 0.0045.
The pump is transmitted through a polarization-maintaining
single-mode fiber (SMF). The PPKTP crystal is cut for type II
phase matching and placed in a polarization-based Mach-
Zehnder interferometer constructed using half-wavelength plates
(HWPs) and three beam displacers (BD1, BD2, and BD3).
Tuning the polarization of the pump by a polarizer and HWP
allows us to create the nonmaximally entangled state jψi ¼
0.967jHHi þ 0.254jVVi, whereH and V denote the horizontally
and vertically polarized single-photon states. The photons, along
with a synchronization signal, are then distributed via optical
fiber to Alice and Bob. The synchronization signal is generated
by a fast photodiode (FPD) and divider circuit which divides the
pump frequency by 800, and is used as a clock to determine
the start of a trial and to time the operation of Alice’s and
Bob’s measurements. This leads to a trial rate of approximately
100 kHz.

FIG. 2. Locations of Alice (A), Bob (B), and the source (S).
Alice and Bob are separated by 194.8� 1.0 m (this is slightly
further than in Refs. [7,35]). Faint gray lines indicate the paths
that the entangled photons take from the source to Alice and Bob
through fiber optic cables. The light-green quarter circles are the
2D projections of the expanding light spheres containing the
earliest available information about the random bits used for
Alice’s and Bob’s setting choices at the trial. When Bob finishes
his measurement, the radius of the light sphere corresponding to
the start of Alice’s QRNG has expanded to 127.3� 0.5 m, after
which it takes an additional 222.3� 3.8 ns before the light sphere
will intersect Bob’s location. Similarly, when Alice completes her
measurement, the light sphere corresponding to the start of Bob’s
QRNG has only reached a radius of 98.3� 0.5 m, and it will take
315.5� 3.8 ns more to arrive at Alice’s station. In this way, the
actions of Alice and Bob are spacelike separated. Inset: Alice’s
and Bob’s measurement apparatuses both consist of a Pockels cell
(PC), operating at approximately 100 KHz, and a polarizer,
constructed using two half-wavelength plates (HWPs), a quarter-
wavelength plate (QWP) and a polarizing beam displacer, in
order to make fast polarization measurements on their respective
photons. The measurement setting is controlled by a QRNG, the
photon is detected by a high-efficiency superconducting nano-
wire single-photon detector, and the resulting signal is recorded
on a time tagger, where a 10 MHz oscillator is used to keep
Alice’s and Bob’s time taggers synchronized.
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assumed to be bounded. That is, knowing all events in the
past light cone, one should not be able to predict the next
choice with a probability better than 0.5þ ϵb. We call ϵb the
(maximum) adversarial bias. In particular, it is assumed that
the quantum devices used cannot have more prior knowl-
edge of the random setting choices than the adversarial
bias for each trial. Specifically, we assume that the adver-
sarial and trial-dependent bias of Alice’s and Bob’s
QRNGs is bounded by ϵb ≤ 1 × 10−3. That is, each of the
setting choices X and Y has a two-outcome distribution
with probabilities in the interval ½0.5 − 1 × 10−3; 0.5þ
1 × 10−3�. The bias assumption is supported in two ways:
first by a quantum statistical model of the QRNGs, validated
by measurements of the QRNG internal operation [36], and
second by the observation that the frequencies of the output
bits of eachQRNGdeviate from0.5 by less than 6 × 10−5 on
average in a run of 21 min of trials.
Protocol implementation.—The goal is to obtain k ¼

512 random bits with error ϵ ¼ 2−64. For this, we set ϵσ ¼
0.8 × 2−64 and ϵx ¼ 0.2 × 2−64. To extract k ¼ 512 random
bits with the TMPS extractor, it suffices to set the entropy
threshold to be σ ¼ 1089. The implementation stages
for each instance of the protocol are summarized in
algorithm 1, and more details are available in the SM [12].
Results.—Ideally, the protocol would be applied con-

currently with the acquisition of the experimental trials. In
this case, the trials were performed three months before the

protocol was fully implemented. About 89 min of exper-
imental results were recorded. The results were stored in
1 min blocks containing approximately 6 × 106 trials each.
The first 21 min were unblinded for testing the protocol,
and the rest were kept in blind storage until the protocol
was fully implemented and ready to be used.
From the first 21 min of unblinded results we decided to

run five sequential instances of the protocol, and for
calibration in each instance we determined to use the
10 min of results preceding to the first trial to be used
for randomness accumulation (see the SM [12] for details).
We note that the trials for randomness accumulation in one
instance can be used also for calibration in the next
instance. For the protocol, we loaded the data and divided
each 1 min block into 60 subblocks of approximately
1 × 105 trials each. The protocol was then designed to use
integer multiples of these subblocks. The first instance of
the protocol started producing randomness at the 22nd
1 min block. Each instance started at the first not-yet-used
subblock and used the previous 600 subblocks for cali-
bration, then processed subblocks until the running entropy
estimate surpassed the threshold σ. In each instance, this
happened well before the maximum number of trials n
determined at the calibration stage was reached, leading to
success of the instance. We then applied the extractor to
produce 512 random bits with error 2−64.
The results are summarized in Table I. It shows that

the experiment time required to fulfill the request for
512 quantum-proof random bits with error 2−64 is less
than 5 min on average, demonstrating a dramatic improve-
ment over other quantum-proof protocols and previous
experiments. The only experimentally accessible alterna-
tive quantum-proof protocol is entropy accumulation as
described in Ref. [34]. We found that satisfying the request
using theoretical results from Ref. [34], with our exper-
imental configuration and performance, would have
required at least 6.108 × 1010 trials, corresponding to
169.7 h of experiment time—see the SM [12] for details.
In conclusion, we demonstrated five sequential instances

of the DIQRNG protocol. For joint (or composable)
security of the five instances, it suffices that the quantum
devices do not retain memory of what happened during the
previous instances. Without this assumption, the joint
security of the five instances can be compromised as

Algorithm 1. Overview of protocol implementation

(1) Calibration
(a) Determine the QEF FðCZÞ and its power β used for each executed trial.
(b) Fix n—the maximum number of trials.

(2) Randomness accumulation: Run the experiment to acquire up to n trials. After each trial i,
(a) Update the running log2-QEF value Li ¼

P
i
j¼1 log2½FðcjzjÞ�, where cj and zj are the observed values of Cj and Zj.

(b) If ½Li − log2ð2=ϵ2σÞ�=β ≥ σ, stop the experiment, set the number of trials actually executed as nact ¼ i, and set
the success event P ¼ 1.

(3) Randomness extraction: If P ¼ 1, then extract k random bits with error ϵ.

TABLE I. Characteristics of the five protocol instances. The
number of subblocks is approximately the number of seconds of
experiment time required. The entropy rate is estimated by
Lnact=ðβnactÞ, where nact is the actual number of trials executed
in an instance, Lnact is the running log2-QEF value at the end of an
instance, and β is the power associated with the QEFwhich is used
for each executed trial and determined at the calibration stage. The
trial rate in the experiment was approximately 100 kHz.

Instance n=107 nact=107
Number of
subblocks β

Entropy
rate=10−4

1 5.25 2.32 233 0.010 6.07
2 4.74 3.76 379 0.010 3.78
3 5.92 2.85 287 0.009 5.47
4 6.20 2.83 285 0.009 5.53
5 5.49 2.72 274 0.010 5.20
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explained in Ref. [38]. In our implementation such prob-
lems are mitigated by the definition of soundness in terms
of the purified distance rather than the conventional trace
distance, but the issues arising in composing protocols like
ours need further investigation.
We have emphasized the importance of latency. To

produce a fixed block of random bits, latency is simply
the time it takes for the protocol to fulfill the request.
Above, we have neglected the classical computing time
required for calibration and extraction since this can be
made relatively small by using faster and more parallel
computers. For the current implementation the time costs
for calibration and extraction are detailed in the SM [12].
The latency for our setup is limited by the rate at which we
can implement random setting choices, which in turn is
limited by the Pockels cells. Since the source produces
pulses at a rate of 79.3 MHz and we can use ten successive
laser pulses as a single trial without reducing the quality of
trials, if the Pockels cell limitation can be overcome, the
latency could be reduced by a factor of about 80 with the
current entangled photon-pair source.
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