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Self-testing quantum random-number generator based on an energy bound
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We introduce a scheme for a self-testing quantum random-number generator and demonstrate it experimen-
tally. Compared to the fully device-independent model, our scheme requires an extra natural assumption, namely,
that the mean number of photons of the signal optical modes is bounded. The scheme is self-testing, as it
allows the user to verify in real time the correct functioning of the setup, hence guaranteeing the continuous
generation of certified random bits. The scheme is based on a prepare-and-measure setup, which we implement
in a proof-of-principle experiment using only off-the-shelf optical components. The randomness generation rate
is 1.25 Mbits/s, comparable to commercial solutions. Overall, we believe that this scheme achieves a promising
trade-off between the required assumptions, ease of implementation and performance.
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I. INTRODUCTION

The device-independent (DI) approach allows for certified
quantum random-number generation (QRNG) based on min-
imal assumptions [1–3]. In particular, no detailed knowledge
about the internal working of the quantum devices is needed
and the output can be guaranteed to be random from the point
of view of a hypothetical adversary, even in the extreme case
where the adversary itself prepared the devices. These ideas
have generated considerable interest in recent years (see [4]
for a recent review) and first proof-of-principle experiments
have been reported [2,5–7].

While conceptually fascinating, the fully DI approach is
still at the moment far from being practical since it re-
quires loophole-free Bell tests, which not only are extremely
challenging to implement but feature rates in state-of-the-art
experiments that are orders of magnitude lower than commer-
cially available QRNGs. This has motivated the development
of alternative solutions (see, e.g., [8–18]), often referred to
as semi-DI (or self-testing), exploring intermediate possi-
bilities between the fully DI setting and the more standard
“device-dependent” approaches to QRNG, which require a
full characterization of the devices (see, e.g., [19–24]). Such
semi-DI solutions are much easier to implement than fully
DI protocols, but rely on some extra, even though limited,
assumptions on the devices. Though the introduction of these
extra assumptions may at first seem a departure from the DI
ideal, one should realize that the DI model also requires a
certain number of assumptions that are far from being trivially
satisfied in practice, such as no information leakage from the
devices or that the software used to acquire and process the
data functions correctly.

In the present work, we introduce a QRNG protocol,
which we believe achieves an excellent trade-off between the

required assumptions, performance and ease of implementa-
tion. The scheme is based on a prepare-and-measure scenario
and thus requires no entanglement or Bell test. In turn, we
report a proof-of-principle experiment that features only stan-
dard off-the-shelf optical components and achieves random-
ness generation rates of the order of MHz, hence comparable
to commercial QRNGs. Moreover, the output randomness can
be certified based on few natural assumptions. Compared to
the fully DI model, our scheme requires an additional assump-
tion, namely, that the signal sent by the source is optical modes
with an average number of photons that is upper bounded.
This assumption is arguably quite natural in an optical setup,
where the mean photon number can be directly measured and
monitored. Our scheme does not require the assumption of
identical and independently distributed runs (i.i.d. hypothesis)
and is thus robust to any sort of memory effects and temporal
drifts. The scheme is “self-testing,” allowing the user to verify
in real time the correct functioning of the setup, hence guar-
anteeing the continuous generation of certified random bits.

II. SECURITY FRAMEWORK

We first present our QRNG protocol, which builds upon
the general framework for self-testing (or semi-DI) RNG
introduced in [25]; note that technical details about the se-
curity analysis are deferred to a companion paper [26]. We
consider a prepare-and-measure scenario with a binary input
x for the preparation device, and a binary output b for the
measurement device. For each input, the preparation device
sends to the measurement device an optical multimode signal
in some quantum state. In addition, there may be internal
classical noise affecting both the state preparation and the
measurements, possibly in a correlated way. The observed
input-output correlations in a single use of the device can then
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be written,

p(b|x) =
∑

λ

p(λ) Tr
[
ρλ

x Mλ
b

]
, (1)

where ρλ
x are the prepared states, Mλ

b are elements of a
positive-operator valued measure (POVM) defining the mea-
surement, and x, b ∈ {0, 1}, while λ is arbitrary and represents
the classical noise.

We aim to certify genuinely quantum randomness in the
output b. This means we need to separate any apparent ran-
domness in b due to the classical noise λ from that originating
from the inherent randomness in the quantum measurements.
Furthermore, we want to do this with only limited character-
ization of the devices. In particular, neither the states nor the
measurements are known to the user. The certification will be
based on the input-output correlations p(b|x), together with an
assumption about the average mean photon number (through-
out the entire experiment) of the emitted quantum states. This
assumption is much weaker than the one appearing in the
work of [16], where the requirement was to bound the mean
energy of each pulse sent by the source. By this assumption
instead, the energy of each pulse can freely fluctuate during
the experiment without reducing the security provided by our
proof. Apart from this assumption, the devices are treated as
black boxes [note that writing (1), we also implicitly assume
that the devices do not share prior entanglement].

Our central assumption, which we refer to as the “energy”
assumption, is formulated as∑

λ

p(λ) Tr
[
ρλ

x N
]
� ωx, (2)

where N is the multimode photon number operator and ωx

represents a bound on the average photon number (i.e., the
energy) of the quantum light states emitted by the preparation
device.

In Ref. [25], it was shown that all correlations which can
be obtained by mixing deterministic strategies using classical
shared randomness must obey

|E0 − E1| � 2(ω0 + ω1), (3)

where we defined Ex := p(0|x) − p(1|x).
We now introduce a physical setup in which this bound

can be violated. Such a violation implies that the devices’
behavior cannot be explained deterministically and thus that
genuine quantum randomness is produced at the output of the
measurement device.

The setup is shown in Fig. 1. Depending on the input x,
the amplitude of a signal coherent state (produced by a laser)
is modulated such that the output amplitude for x = 0 is 0,
while for x = 1 it is α. The transmitted state is then measured
by interfering it with a local oscillator with amplitude β on a
beam splitter, followed by single-photon threshold detection
in one output port. The other output port is simply ignored.
The beam splitter has transmittivity t2 and reflectivity r2 =
1 − t2. In the event that the detector does not click, we assign
the output b = 0, while b = 1 corresponds to a click. This
protocol is a hybrid combination of the two protocols shown
in [25], i.e., the on-off keying (OOK) and the binary phase-
shift keying (BPSK). Our protocol has the same modulation

FIG. 1. Self-testing quantum random-number generation based
on bounded energy. A signal coherent state is modulated depending
on the input x. The signal is blocked for x = 0 and transmitted for
x = 1 and the average energy after the modulation is bounded by ω.
The signal is mixed with a local oscillator on a beam splitter with
transmittivity t2 and measured by a single-photon detector.

of the source state as the OOK and the kind of interferometric
detection presented in the BPSK; however, the protocol pre-
sented here requires, instead of two balanced linear detectors,
only a threshold single-photon detector. The probabilities for
the detector not to click can be computed explicitly,

p(0|0) = e−η|rβ|2 , (4)

p(0|1) = e−η|tα+rβ|2 , (5)

where η ∈ [0, 1] represents a combined transmission and
detection efficiency accounting for losses and inefficient
detectors [27]. The remaining probabilities are determined by
normalization.

The mean photon numbers at the output of the preparation
device are

〈N〉 =
{

0 for x = 0
|α|2 for x = 1,

(6)

and we can then take the energy bounds on the transmitted
states (2) to be equal to the these mean photon numbers. Note
that the local oscillator carries no information about x and is
not considered to be part of the prepared state. In particular,
no assumption is made on the amount of energy in the local
oscillator arm.

In our case, the inequality (3) then becomes∣∣e−η|tα+rβ|2 − e−η|rβ|2 ∣∣ � |α|2. (7)

It is easy to see that for any value of η > 0, there exist
choices of α and β for which (7) is violated. For instance, take
α = ηt/2, β = 1/r. Then one can verify analytically that the
inequality is violated for small η by expanding the left-hand
side in η, and one can check numerically that it is also the case
for all larger η. Thus, for any nonzero efficiency, our scheme
admits α and β for which the output b is not deterministic.

Given data that violate (3), we need to quantify the
randomness generated by the measurement device. For a
device behavior which is independent and identically dis-
tributed (i.i.d.) in each experimental round, the optimal
asymptotic rate of randomness generation, relative to an ob-
server with knowledge of the input x as well as the internal
variable λ, is given by the Shannon entropy H (B|X,�) =
−∑

b,x,λ p(λ)p(x)p(b|x) log2 p(b|x, λ) (this follows from the
asymptotic equipartition theorem [28]). For any given values
of the probabilities p = {p(x, b)}b,x and the energy bounds
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FIG. 2. Asymptotic rate of randomness generation (in bits) as a
function of the experimental parameters. The rate is the worst-case
entropy H (B|X�), given the correlations p and the average energy
constraint ω̄. These were obtained assuming an identical phase
arg(α) = arg(β ), a biased input distribution px (1) = 0.25, detection
efficiency η = 50%, and transmission t2 = 99%. Only the α and β

in the shaded region satisfy the inequality (7).

ω = {ωx}x (or linear functions of them), it is shown in [26]
how, using semidefinite programming, one can put a lower
bound on H (B|X,�) that is valid for arbitrary decomposi-
tions (1) and (2) that use hidden classical noise p(λ).

As an illustration, we show in Fig. 2 the entropy for
several values of α and β, using η = 50%, t2 = 99%, a bi-
ased input distribution p(1) = 25%, and assuming the bound∑

x p(x)ωx � ω̄ = p(1)|α|2 on the average value of the ener-
gies ωx.

Semidefinite programming

The semidefinite programming (SDP) introduced in [26]
not only returns the lower bound on H (B|X,�), but also pro-
vides a self-test or witness certifying this amount of random-
ness. This self-test consists of a linear function γ [p] − ζ [ω]
in p and ω with the property that H (B|X,�) � γ [p] − ζ [ω].
Once such witness is known, it thus suffices to evaluate it on
p and ω to obtain a lower bound on H (B|X,�).

The existence of such a witnesses, which can be computed
for any given p and ω, immediately suggests a semi-DI RNG
protocol: (1) fix a certain witness (tailored to the expected
behavior of the devices); (2) run the devices n times and record
the inputs X = (X1, X2, . . . ) and outputs B = (B1, B2, . . . );
and (3) compute the value γ [ f ], where f (x, b) are the frequen-
cies of occurrence of (Xi, Bi ) = (x, b), and check if γ [ f ] −
ζ [ω] � h is above some threshold h. The passing of this
test, denoted by “Pass,” establishes that the device is working
properly.

In the implementation of such a protocol, it is not neces-
sarily the case that the device behaves in a i.i.d. way and its
general behavior is now described by an unknown n-round
joint distribution p[B,X ,�]. Still the observed value of the linear
witness, computed from the observed frequencies, certifies a
certain amount of randomness in the output string B. Specif-
ically, in [26], it is shown that the distribution p[B,X ,�|Pass]
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FIG. 3. Experimental setup. A coherent stage is generated by a
pulsed diode laser and sent to a Michelson interferometer. One arm
(green path) is used to prepare the signal and the other one (blue path)
to prepare the local oscillator.

conditioned on the passing of the test contains an amount of
randomness given by

H ε′
min(B|X ,�) � n

[
h − c

√
log2(ε/2)

n
− d

log2(ε/2)

n

]
. (8)

Here, H ε′
min(B|X ,�) is the worst-case conditional

smooth min-entropy, defined as the largest k such
that Pr[− log2 p(B|X�Pass) � k] � 1 − ε′. It roughly
corresponds to the largest number of bits that can be extracted
from the output string B using a strong extractor, such that the
resulting distribution deviates from an ideal distribution (i.e.,
uniform and independent of X�) at most with probability
ε′. The security parameter ε in the right-hand side of (8),
which should be chosen small (ε = 10−10 in the following), is
related to the smoothing parameter though ε′ = ε/ Pr(Pass).
This ensures that the protocol is ε-sound because the
probability of both passing the test and deviating from an
ideal distribution Pr(Pass) × ε′ = ε is guaranteed to be small.
The subleading error terms in (8), given by the constants
c, d > 0, depend on the choice of witness γ [·] and ζ [·] and are
given in [26].

III. EXPERIMENTAL SETUP AND RESULTS

In order to implement the scheme presented in Fig. 1, we
used the experimental setup drawn in Fig. 3. A coherent state
is generated by a pulsed diode laser at 655 nm trigged by a
field-programmable gate array (FPGA) at 12.5 MHz. A set
of half-wave plate (HWP) and polarizing beam splitter (PBS)
is used to prepare the local oscillator (β) and the signal (α)
and to tune the amplitude ratio between them. To maximize
the transmission to the output port of the interferometer, one
quarter-wave plate (QWP) is inserted in each arm to rotate
the polarization of the incoming light. For each pulse, a
pseudorandom binary input x is generate by the FPGA and
sent to the acousto-optic modulator (AOM). When x = 0, the
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FIG. 4. Correlation function with respect to the phase differ-
ence between the two arms of the interferometer. The solid line
corresponds to the simulated behavior of the device without phase
fluctuation. The gray area corresponds to a relative phase incertitude
region of ±10%. The red (dark) area corresponds to the region of
correlations unachievable once the bound on the energy ω is chosen
to be 0.0025.

AOM deflects the light which introduces an additional loss of
more than 23 dB.

At the output of PBS1, the signal and local oscillator are
in the same spatial and temporal mode, but have orthogonal
polarizations. To make them interfere, they pass through a
HWP and PBS2. The HWP is oriented to achieve a transmis-
sion of t2 = 99% for the signal. Then, the light is detected
by a single-photon detector (SPD) (PerkinElmer SPCM-AQR)
with an efficiency of 77% for a dark-count rate around 300 Hz
and the digital signal is recorded by the FPGA. Each second,
the FPGA sends the data to a personal computer for storage.

In order to bound the average energy on the signal, the
power was measured at the output of PBS1 while obstruct-
ing the local oscillator arm. This was done with a linear
power meter (Thorlabs PM100D with S122C sensor) with
an absolute uncertainty of ±5%. The average energy bound
was then calculated by considering the attenuation chosen
before the interferometer and by dividing the resulting power
by the repetition rate. The power on the signal and local
oscillator was adjusted in order to maximize the amount of
entropy generated based on the results presented in Fig. 2.
These measurements were done twice, i.e., before and after
the experiment, in order to ensure the stability of the power.
Alternatively, the power could be monitored in real time using
a beam splitter between the two PBSs, in a similar manner as
in Ref. [16].

After the energies of the signal and local oscillator are set,
we launch a measurement to estimate the correlation between
the modulation of the signal and the detections. The measure-
ment is carried out by changing the relative phase between α

and β. This is done by moving the mirror in the local oscillator
arm with a piezoelectric translator. The relevant marginals are

then estimated as p(b|x) = nb,x/nx, where nb,x and nx corre-
spond to the number of events for an output b given an input x
and the total number of state x sent, respectively. Then, we cal-
culated the correlation function E = p(b = x) − p(b �= x)
shown in Fig. 4 as a function of the phase difference between
α and β with ωestimate = 0.0022(1). The energy of the local
oscillator β is set to 99 mean photons per pulse, which corre-
sponds to (1 − t2)|β|2 = 0.99 with 1 − t2 = 0.01. The solid
line in the figure corresponds to the theoretical prediction for a
perfect system (no phase fluctuations) with a signal state with
ωestimate mean photon number and global detection efficiency
of 55%. We fixed the energy bound ω̄ = 0.0025 > ωestimate in
order to assure that the general assumption is always verified.
The fluctuations in Fig. 4 are due to fluctuations of the relative
phase between the signal and local oscillator owing to the
instability of the interferometer.

To perform a QRNG protocol, we considered 35 blocks of
n = 108 rounds (8 s measurement) in which the interferometer
was around a constructive interference. A witness was deter-
mined and optimized for this regime by using one trial block
and, assuming an average energy assumption ω̄ = 0.0025, a
threshold was chosen at the value h = 0.117, corresponding
to a rate (8) of 0.1 bits/round. The test was satisfied in all
blocks, giving an average output rate of certified quantum
randomness of 1.25 MHz. In order to promote this proof-of-
principle experiment to a fully practical device, one would
need to actively stabilize the interferometer. This can be done
via standard methods; see, e.g., [29]. This procedure would
then increase both the extractable entropy and the passing
probability.

IV. CONCLUSION

In conclusion, we developed a simple scheme for a self-
testing QRNG based on an energy bound. This scheme repre-
sents, in our opinion, an excellent compromise between the
required assumptions, experimental complexity and perfor-
mance. From the point of view of security, we believe that
weakening the required assumptions without moving to the
full DI scenario will be difficult. From the point of view
of implementation and performance, progress can still be
achieved, for instance, by using integrated optics.
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