Quantum Random Number Generators: cheaper, faster, more secure

• Randomness plays an increasingly important role: algorithmic and quantum cryptography, simulations, on-line gaming.

Market	Market volumes* by 2020 (yearly)	Target price of QRNG component	Market size (yearly)
Mobile devices	1B	EUR 1	EUR 1B
IoT devices	3B	EUR 1	EUR 3B
HPC	500K	EUR 150	EUR 75M
Data centre security (HSMs)	1M	EUR 150	EUR 150M
Gb/s QKD	10K	EUR 1,000	EUR 10M

QRANGE'S GOALS

- Push QRNG device, system and eventually product development towards high TRL devices and systems that are
 - Iow-cost and compact
 - ✓ with certified randomness and
 - ✓ at high rates.

 Realise a certification framework and standards for truly quantum random number generators.

- Current problems:
 - ⊗ Algorithmic random number generation (RNG) is deterministic
 - \otimes RNG based on classical physics is not a controlled process per construction \rightarrow open doors for failures and attacks
 - ⊘ Quantum RNG (QRNG) needs further development to compete with established products:
 → SWAP, speed, certification, improved security

CONSORTIUM

- University of Geneva
- ICFO The Institute of Photonic
 Sciences
- Katholieke Universiteit Leuven
- Université libre de Bruxelles
- Universita degli Studi di Trento
- Fondazione Bruno Kessler
- Robert Bosch GmbH
- ID Quantique SA
- Quside Technologies S.L.

USE CASES & SYSTEM ARCHITECTURE

- Systematic approach
- Open-access publications and communication of results

This will allow business to monitor and make informed decisions for investment and entering the market.

CERTIFICATION FRAMEWORK

- AIS-31: PTG.3 class sufficient?
- Do we need a PTG.Quantum class?
- Device-independent (DI), semi-DI, self-testing?

We aim to have framework and methodology ready for certification authorities by the end of the project.

CHEAP & COMPACT

Prototypes with

- mm³
- 1€
- >1Mb/s
- TRL6-7
- Use cases
 - IoT domain
 - ✓ system integrators
 - novel application areas to arise.

ULTRA SECURE

Self-testing prototypes with

- 1u size
- K€
- 100 Mb/s
- TRL5-6
- Use cases
 - ✓ critical infrastructure
 - ✓ security applications for early-adopters.

ULTRA FAST

Prototypes with

- 1u size
- K€
- > 10 Gb/s
- TRL7
- Use cases
 - ✓ high-speed QKD
 - ✓ general cryptography
 - \checkmark opportunities in HPC.

CONCEPTS & THEORY

- New semi-DI and DI concepts with minimised and testable assumptions
- Market needs and technical constraints considered from the start
- Providing an increased level of trust, facilitating entry into markets where high-security is of paramount importance.

Quantum Flagship, 2018