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We investigate how much randomness can be extracted from a generic partially entangled pure state of
two qubits in a device-independent setting, where a Bell test is used to certify the correct functioning of the
apparatus. For any such state, we first show that two bits of randomness are always attainable both if projective
measurements are used to generate the randomness globally or if a nonprojective measurement is used to generate
the randomness locally. We then prove that the maximum amount of randomness that can be generated using
nonprojective measurements globally is restricted to between approximately 3.58 and 3.96 bits. The upper limit
rules out that a bound of four bits potentially obtainable with extremal qubit measurements can be attained. We
point out this is a consequence of the fact that nonprojective qubit measurements with four outcomes can only
be self-tested to a limited degree in a Bell experiment.
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Although it was not the original motivation [1], Bell’s the-
orem [2] allows for a very strong test of quantum randomness.
By preparing an entangled quantum system and exhibiting a
Bell inequality violation with it, we can immediately know
that the measurement outcomes were not the result of an
underlying deterministic process. This observation is the basis
of a class of quantum cryptography protocols, called device
independent, that incorporate a Bell test as a self-test of
the correct functioning of the apparatus. The class includes
device-independent versions of quantum key distribution and
random number generation [3–6].

This perspective prompts an obvious question: How much
randomness can we extract from a given quantum system,
and how might this depend on the degree of entanglement?
Previous work (see Table I) has indicated that the two do
not seem strongly related; we cannot necessarily get more
randomness from a maximally entangled state than a weakly
entangled one of the same dimension. This point was first
made in Ref. [7], where it was shown that, with the help of
a suitable Bell test, a uniformly random bit could be gener-
ated from the result of a projective measurement performed
on one part of any partially entangled pure state of two
qubits. Reference [7] also considered the possibility of gener-
ating more randomness from the joint outcomes of projective
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measurements performed on both subsystems. In this case,
Ref. [7] found that the maximum of two uniformly ran-
dom bits could be generated, but only confirmed that this
was attainable using a maximally entangled state |φ+〉 =
(|00〉 + |11〉)/

√
2 or one could get arbitrarily close to it

using a very weakly entangled state of the form |ψθ 〉 =
cos(θ/2)|00〉 + sin(θ/2)|11〉 in the limit θ → 0 where it be-
comes separable. Between these two extremes, determining
the amount of randomness that can be generated remains an
open problem.

As well as projective measurements, it is also possible to
perform nonprojective measurements on quantum systems.
Nonprojective measurements can potentially generate more
randomness as they can have more outcomes than the di-
mension of the quantum system they act on. Extremal qubit
measurements in particular may have up to four outcomes [9].
In a bipartite Bell-type experiment this means that potentially
up to two bits of randomness could be generated locally or up
to four bits globally using nonprojective measurements. The
first limit is known to be attainable: Reference [8] describes a
way in which two bits of randomness can be generated locally
using a single measurement on one side. But it is currently
an open question whether the second limit of four bits is
attainable globally. The same work, Ref. [8], only confirmed
numerically that at least around 2.8997 bits of randomness can
be generated this way. Both results were established only for
the maximally entangled state.

In this Rapid Communication, we solve the question of
how much randomness can be generated using projective mea-
surements from a generic pure entangled state of two qubits
and show that the upper limit of two bits is always attain-
able regardless of how strong or weak the entanglement is.
We also show that, alternatively, two bits of randomness can
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TABLE I. Maximum amount of randomness (quantified by the
min-entropy) extractable from one (local) or jointly from two
(global) projective (PROJ) or nonprojective (POVM) measurements
from the maximally (|φ+〉) and any partially (|ψθ 〉) entangled two-
qubit pure state. Square brackets indicate a range (rounded outward)
within which the optimal amount of randomness is known to lie.
Results that were previously known appear with citations to the
works in which they first appeared.

|φ+〉 |ψθ 〉
Local PROJ 1 bit [5] 1 bit [7]

POVM 2 bits [8] 2 bits

Global PROJ 2 bits [7] 2 bits
POVM [3.58, 3.96] bits [3.58, 3.96] bits

be extracted locally from any such state using a nonprojective
measurement. It turns out however, as we will detail below,
that nonprojective measurements can only be reconstructed
to a limited degree from the correlations observed in a Bell
experiment and this limits the amount of randomness that
can be generated globally. We rule out that any scheme can
generate more than about 3.9527 bits of randomness in this
way, proving that the potential upper limit of four bits is not at-
tainable. We nevertheless show that at least around 3.5850 bits
of randomness can be generated globally with suitable non-
projective measurements from any partially entangled state.

The Bell test. To introduce the problem, we begin by
considering the form of an arbitrary partially entangled state
of two qubits. Such a state can always be expressed in its
Schmidt decomposition as

|ψθ 〉 = cos

(
θ

2

)
|00〉 + sin

(
θ

2

)
|11〉 (1)

for an angle θ that, without loss of generality, we can and
hereafter will take to be in the range 0 < θ � π

2 . The same
state is equivalently represented by its density operator ψθ =
|ψθ 〉〈ψθ |, which we can express as

ψθ = 1

4

[
1 ⊗ 1 + cos(θ )(1 ⊗ Z + Z ⊗ 1)

+ sin(θ )(X ⊗ X − Y ⊗ Y) + Z ⊗ Z
]

(2)

in terms of the identity and Pauli operators 1, X, Y, and Z
acting on each subsystem. We can see that Alice and Bob
will have to perform measurements in the X-Y plane, for
example, A = X and B = Y, in order to extract two uniformly
random bits from this state, since this is the only way to have
〈A〉 = 〈A ⊗ B〉 = 〈B〉 = 0. We would, however, intuitively ex-
pect the maximum violation of a Bell inequality on ψθ to
be attained with measurements having a component in the Z
direction, since the correlation terms involving Z in (2) are
larger in magnitude than the analogous terms involving X and
Y. As such, we anticipate that we will need a Bell experiment
engineered to exploit the entire Bloch sphere.

To this end, we propose the following Bell test in which Al-
ice and Bob perform ±1-valued measurements Ax, x = 1, 2, 3

and By, y = 1, . . . , 6, in each round. They use the statistics to
estimate the values of three Bell expressions. The first two,

Iβ = 〈βA1 + A1(B1 + B2) + A2(B1 − B2)〉, (3)

Jβ = 〈βA1 + A1(B3 + B4) + A3(B3 − B4)〉, (4)

are modified Clauser-Horne-Shimony-Holt (CHSH) expres-
sions of the kind introduced in Ref. [7], while the third,

S = 〈A2(B5 + B6) + A3(B5 − B6)〉, (5)

is an ordinary CHSH [10,11] expression. We choose

β = 2 cos(θ )√
1 + sin(θ )2

(6)

for the value of the parameter β in the definitions of Iβ and
Jβ , depending on the angle θ that identifies the intended state
|ψθ 〉. Alice and Bob should in particular check that these Bell
expressions attain the values

Iβ = 2
√

2
√

1 + β2/4, (7)

Jβ = 2
√

2
√

1 + β2/4, (8)

S = 2
√

2 sin(θ ). (9)

The Bell expectation values (7)–(9) can be attained by
measuring

A1 = Z, A2 = X, A3 = ±Y (10)

on Alice’s side and performing suitable measurements on
Bob’s side on |ψθ 〉 [7]. Crucially for the intended application
to randomness generation, this is, up to trivial modifications
such as local changes of bases and extensions to higher di-
mension, essentially the only way to attain these expectation
values. More precisely, in Supplemental Material A [12] we
establish the following, which holds regardless of the Hilbert-
space dimension.

Lemma 1. The conditions Iβ = Jβ = 2
√

2
√

1 + β2/4 and
S = 2

√
2 sin(θ ) identify an extremal point in the quantum set

and if they are attained there is a choice of local bases in
which:

(i) the underlying state has the form

ρ = ψθ ⊗ σA′B′ , (11)

where ψθ is the partially entangled state (2) and σA′B′ is an
ancillary state which may be of any dimension;

(ii) Alice’s measurements act on the state according to

A1 = Z ⊗ 1A′ , (12)

A2 = X ⊗ 1A′ , (13)

A3 = Y ⊗ A′, (14)

where A′ is a ±1-valued Hermitian operator;
(iii) Bob’s measurements act on the state according to

B1 + B2√
2λ+

= B3 + B4√
2λ+

= Z ⊗ 1B′ , (15)

B1 − B2√
2λ−

= B5 + B6√
2

= X ⊗ 1B′ , (16)
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−B3 − B4√
2λ−

= −B5 − B6√
2

= Y ⊗ B′, (17)

where λ± = 1 ± β2/4 and B′ is a ±1-valued Hermitian oper-
ator;

(iv) the ancillary state σA′B′ in (11) and operators A′ and B′
are related in such a way that

〈A′ ⊗ B′〉σA′B′ = 1. (18)

The operators A′ and B′ appearing in Lemma 1 are in-
evitable and reflect the fact that we cannot distinguish a set
of qubit measurements from their complex conjugates on both
sides [13]. We should also remark that, strictly speaking, (ii)
and (iii) give the form of Alice’s and Bob’s measurements
only on the supports of the respective marginals ρA = TrB[ρ]
and ρB = TrA[ρ] of the underlying state. This is not a problem
for us since any action the measurements may have on part
of the Hilbert space not containing the state cannot have any
impact on the correlations. In the following we will assume,
for simplicity, that the marginals are of full rank.

Randomness with projective measurements. Lemma 1
makes it straightforward to show that we can device-
independently extract up to two bits of randomness using
projective measurements. To do this, we simply add a seventh
measurement, B7, to the Bell test on Bob’s side and check that
its correlation with A2 is

〈A2B7〉 = sin(θ ). (19)

Using A2 = X ⊗ 1A′ and ρ = ψθ ⊗ σA′B′ from Lemma 1 and
tracing out everything on Alice’s side, we can rewrite the
correlation on the left as

〈A2B7〉 = sin(θ )Tr
[
B7

1
2 X ⊗ σB′

]
. (20)

The operator 1
2 X ⊗ σB′ has a trace norm of 1 and, since we are

assuming σB′ is of full rank, the only way for the right-hand
sides of (19) and (20) to be equal is with

B7 = X ⊗ 1B′ . (21)

With this information we can prove that the results of measur-
ing A3 and B7 are maximally random. The probabilities of the
four possible outcomes are

P(ab|37) = 1
4 〈(1 + aA3) ⊗ (1 + bB7)〉, (22)

a, b ∈ {±1}. Direct calculation with A3 = Y ⊗ A′ and B7 =
X ⊗ 1 gives

P(ab|37) = 1
4 . (23)

Importantly, the fact that we can derive P(ab|37) =
1/4 from Iβ = Jβ = 2

√
2
√

1 + β2/4, S = 2
√

2 sin(θ ), and
〈A2B7〉 = sin(θ ) shows that these conditions together are ex-
tremal, i.e., they cannot be attained by averaging quantum
strategies that give different values of these quantities. This
rules out the possibility of a more detailed underlying expla-
nation of the correlations that might allow better predictions
to be made about A3 and B7.

Tomographic reconstruction of POVMs. POVMs per-
formed on qubit systems can have more than two outcomes
and can potentially be used to generate more randomness

than projective measurements. The nature of the device-
independent scenario means we will only be interested in
POVMs that are extremal, i.e., that cannot be expressed as
convex combinations of other POVMs. The extremal qubit
POVMs were classified in Ref. [9] and the only nontrivial ones
consist of at most four rank-one elements αa = |αa〉〈αa| that
are linearly independent.

We can certify the randomness of some POVMs device-
independently by using a form of tomography to partially
reconstruct them. To see how this works note first that, in
the device-dependent setting, we can reconstruct any extremal
qubit POVM {αa} on (for example) Alice’s side from the
correlations it produces with the Pauli operators on Bob’s side.
That is, it turns out that the expectation values 〈αa ⊗ σν〉ψθ

,
for σν = (1, X, Y, Z) on Bob’s side, contain sufficient infor-
mation to uniquely identify {αa} on Alice’s side provided that
the underlying state |ψθ 〉 is known.

In the device-independent scenario, we do not know that
the quantum system we are manipulating is limited to a pair
of qubits. However, according to Lemma 1 we can verify that
Alice is performing Pauli-type measurements up to complex
conjugation, and the linear combinations of Bob’s measure-
ments in (15)–(17) effectively give us such operators on Bob’s
side. With this, we can check that a POVM {Ra} on (for
example, again) Alice’s side produces correlations consistent
with an extremal qubit one, i.e., that

〈Ra ⊗ Bν〉ψθ⊗σ = 〈αa ⊗ σν〉ψθ
, (24)

with Bν = (1 ⊗ 1, X ⊗ 1, Y ⊗ B′, Z ⊗ 1), where {αa} is
some ideal reference qubit POVM. In Supplemental Material
B [12], we prove that this allows us to infer the following on
the form of {Ra}.

Lemma 2. If the correlations obtained from a POVM {Ra}
match those obtainable from an extremal reference qubit
POVM {αa} according to (24), then the elements Ra must be
of the form

Ra = αa ⊗ A′
+ + α∗

a ⊗ A′
−

+ |αa〉〈α∗
a | ⊗ K ′

a + |α∗
a〉〈αa| ⊗ K ′

a
†
, (25)

where |α∗
a〉 is the complex conjugate of |αa〉, A′

± = (1 ± A′)/2
are projectors on the positive and negative parts of A′ from
Lemma 1, and the K ′

a satisfy the operator inequalities

K ′
aK ′

a
† � A′

+, K ′
a

†K ′
a � A′

−, (26)

and the condition ∑
a

|αa〉〈α∗
a | ⊗ K ′

a = 0. (27)

Furthermore, if {Ra} has three outcomes or less, then K ′
a = 0

and (25) simplifies to

Ra = αa ⊗ A′
+ + α∗

a ⊗ A′
−. (28)

In other words, our Bell test allows us to reconstruct, up to
complex conjugation, extremal POVMs with two or three out-
comes but we can only partially constrain the form of POVMs
with four outcomes. As we elaborate on in the Supplemental
Material [12], the place where the number of outcomes makes
a difference is in the condition (27): when there are three
outcomes or less, the off-diagonal |αa〉〈α∗

a | terms in (25) are
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always linearly independent and thus (27) can only be satisfied
with K ′

a = 0. On the other hand, a simple calculation shows
that 〈α∗|Y|α〉 = 0 for any qubit state vector; this means that
the |αa〉〈α∗

a |’s are restricted to the three-dimensional space of
operators spanned by {1, X, Z} and they can never be linearly
independent if there are four of them. In that case it is always
possible to satisfy (27) with nonzero K ′

as.
Randomness with POVMs. As we stated earlier, the

maximum amount of randomness that could potentially be
generated if both parties use extremal POVMs is limited to
four bits. It is indeed possible to find extremal qubit POVMs
that can generate arbitrarily close to this amount of random-
ness from any partially entangled state |ψθ 〉. Unfortunately,
the fact that we cannot fully self-test POVMs means that this
bound is not attainable in the device-independent setting. To
see this, let us suppose that Alice and Bob unknowingly try
to generate their random results using four-outcome POVMs
{Ra} and {Sb} which are related to some ideal extremal qubit
POVMs {αa} and {βb} by

Ra = αa ⊗ |+〉〈+|A′ + α∗
a ⊗ |−〉〈−|A′

+ λa|αa〉〈α∗
a | ⊗ |+〉〈−|A′

+ λ∗
a|α∗

a〉〈αa| ⊗ |−〉〈+|A′ , (29)

Sb = βb ⊗ |+〉〈+|B′ + β∗
b ⊗ |−〉〈−|B′

+ μb|βb〉〈β∗
b | ⊗ |+〉〈−|B′

+ μ∗
b|β∗

b 〉〈βb| ⊗ |−〉〈+|B′ , (30)

where λa and μb are some complex coefficients with mag-
nitudes less than 1, while an eavesdropper at each round
randomly and equiprobably chooses and prepares one of
two states ψθ ⊗ χ ′

+ or ψθ ⊗ χ ′
− with different ancillary

parts |χ ′
±〉 = (| + +〉 ± | − −〉)/

√
2. Using that 〈α∗β∗|ψθ 〉 =

〈αβ|ψθ 〉∗, we can work out that the joint probability of Alice’s
and Bob’s outcomes, conditioned on either ancillary state
being chosen by Eve, is

〈Ra ⊗ Sb〉ψθ⊗χ ′± = |〈αaβb|ψθ 〉|2 ± Re[λ∗
aμ

∗
b〈αaβb|ψθ 〉2].

(31)

These probabilities average out to the ideal joint probabili-
ties |〈αaβb|ψθ 〉|2 that would be obtained from the reference
qubit POVMs on |ψθ 〉; hence, Alice and Bob have no way
to detect, device independently, that they are measuring {Ra}
and {Sb} rather than {αa} and {βb}. Eve, however, knowing
which ancilla state she chose, also knows which of the two
joint distributions in (31) was actually prepared in each round
and can use this to make a more informed guess about what
the outcome will be.

Let us see how this could help Eve in the worst case.
As we pointed out above, the off-diagonal terms |αa〉〈α∗

a |
and |βb〉〈β∗

b | are never linearly independent and, thus, the
coefficients λa and μb can be chosen nonzero. We are free
to scale them such that the largest coefficient on each side is
of magnitude one. By also exploiting the freedom to choose
their phases we can arrange that, for at least one pair (a, b) of
outputs, Re[λ∗

aμ
∗
b〈αaβb|ψθ 〉2] = |〈αaβb|ψθ 〉|2. In other words,

we are certain we can arrange for at least one of the probabili-
ties 〈Ra ⊗ Sb〉ψθ⊗χ ′− to be zero. This means that the probability

of the most likely joint outcome, conditioned on Eve choosing
|χ ′

−〉, cannot be lower than 1/15. It follows that the random-
ness that can be certified device-independently for the entire
protocol can never be higher than

− log2

[
1

2

(
1

15
+ 1

16

)]
≈ 3.9527 bits (32)

regardless of the state and POVMs that Alice and Bob try to
use.

On a more positive note, the above-described complication
does not manifest if only one of the parties uses a measure-
ment with four outcomes and, in that case, the amount of
randomness that can be generated device-independently is the
same as the amount of randomness that can be generated using
extremal qubit POVMs performed on |ψθ 〉. This means it is
potentially possible to generate up to two bits of randomness
locally, or alternatively potentially up to

− log2(1/12) ≈ 3.5850 bits (33)

of randomness globally using a four-outcome POVM on one
side and a three-outcome POVM on the other. We give explicit
constructions of POVMs that yield these amounts of random-
ness (or arbitrarily close) in Supplemental Material C [12].

Conclusion. Our work reinforces the observation that the
amount of randomness obtainable from a quantum system
does not in general increase with the degree of entanglement.
In two versions of the problem, we have confirmed that an
upper limit of two bits of randomness is always obtainable
from any partially entangled pure state of two qubits. In the
global case using POVMs, although we do not know the opti-
mal amount of extractable randomness we have significantly
narrowed the range to between about 3.58 and 3.96 bits for
any state. The nontrivial latter limit establishes that the upper
bound of four bits is not attainable in this case.

Our results rely on the fact that we can reconstruct the
underlying quantum state and measurements in our Bell test
sufficiently well to conclude that the outcomes are genuinely
random. This adds to a growing literature showing that we
can often infer substantial information about the quantum
resources available from a Bell test [14–18]. Previous work
has notably shown that the partially entangled state [19,20]
or measurements spanning the entire Bloch sphere (up to
complex conjugation) [8,21,22] can be self-tested, although
before now not together in the same test.

Our work also led us to investigate whether it is possible
to self-test nonprojective measurements in quantum physics
and we found that qubit POVMs with four outcomes can
only be self-tested to a limited extent. The ambiguity with
respect to complex conjugation can thus, as we found here,
make a significant difference in the device-independent set-
ting. It will be interesting to further explore this problem,
both for qubit systems and in higher dimension. In particu-
lar, closing the gap on optimal randomness generation with
POVMs is likely to require developing a better understand-
ing of the general form that we found POVMs may take in
lemma 2.

Note added. Previously, we became aware that the authors
of Ref. [23] had independently found using a similar approach
that two bits of randomness can be generated globally using
projective measurements from the partially entangled state.
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