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Schrödinger held that a local quantum system has some objectively real quantum state and no other (hid-
den) properties. He therefore took the Einstein-Podolsky-Rosen (EPR) phenomenon, which he generalized and
called ‘steering’, to require nonlocal wavefunction collapse. Because this would entail faster-than-light (FTL)
information transmission, he doubted that it would be seen experimentally. Here we report a demonstration of
EPR steering with entangled photon pairs that puts—in Schrödinger’s interpretation—a non-zero lower bound
on the amount of FTL information transmission. We develop a family of n-setting loss-tolerant EPR-steering
inequalities allowing for a size-d classical message sent from Alice’s laboratory to Bob’s. For the case n = 3
and d = 2 (one bit) we observe a statistically significant violation. Our experiment closes the efficiency and
locality loopholes, and we address the freedom-of-choice loophole by using quantum random number genera-
tors to independently choose Alice’s and Bob’s measurement basis settings. To close the efficiency and locality
loopholes simultaneously, we introduce methods for quickly switching between three mutually unbiased mea-
surement bases and for accurately characterizing the efficiency of detectors. From the space-time arrangement
of our experiment, we can conclude that if the mechanism for the observed bipartite correlations is that Alice’s
measurement induces wave-function collapse of Bob’s particle, then more than one bit of information must
travel from Alice to Bob at more than three times the speed of light.

I. INTRODUCTION

In 1935, Einstein, Podolsky and Rosen (EPR) put forward
their famous paradox to declare the quantum mechanical de-
scription of physical reality incomplete [1]. Their argument
relied on a remarkable feature of bipartite quantum entangle-
ment, that the choice of measurement by one party (Alice)
seems to affect, instantaneously, the type of state held by the
second party (Bob). Einstein later called this phenomenon
“spooky action-at-a-distance" [2]. Meanwhile, in the same
year as EPR, Schrödinger called the phenomenon “steering"
or “piloting” the remote state [3], and discussed the possibil-
ity of using arbitrarily many types of measurement. Reid [4]
gave the first formulation of an experimental criterion for test-
ing this effect based on EPR’s example of position and mo-
mentum. More recently, Schrödinger’s generalisation was for-
malised, as EPR steering, by one of us and co-workers [5, 6],
as the experimental violation of the asymmetric model com-
prising a local hidden state (LHS) quantum model for Bob’s
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system and a local hidden variable (LHV) model to generate
Alice’s measurement results. Subsequently, broad classes of
experimental criteria to demonstrate EPR steering, known as
steering inequalities, were derived [7–10]. Moreover, EPR-
steering was shown [5, 6] to be equivalent to the quantum in-
formation task of verifying entanglement in the absence of
trust of Alice or her equipment. This is relevant for commu-
nication networks where reliability of devices and dishonest
observers becomes an issue [11–14].

While the largest impacts of EPR steering have been in
its myriad quantum information applications —including one-
sided device-independent quantum cryptography [12–18], se-
cure quantum teleportation with high fidelity [19–21] and
subchannel discrimination [22–24]—there has also been con-
siderable theoretical and experimental interest in its foun-
dational implications [25–42], as Einstein and Schrödinger
were concerned with. In particular, from the perspective of
Schrödinger, who was convinced of the completeness and cor-
rectness of the quantum state as a description of a local sys-
tem, EPR steering implied a genuinely superluminal effect
(which is why he doubted that it would be seen experimen-
tally [3]). This effect was first demonstrated in a way that
closed the locality and efficiency loopholes for EPR steering
in 2012 [27]. However, that experiment did not put any lower
bound on how much classical information would have to be
sent faster-than-light (FTL) for Alice to steer Bob’s state, in
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the absence of entanglement.
The question of how to establish a lower bound on the ap-

parent FTL information transmission in EPR steering was the-
oretically investigated in Refs. [43, 44]. The authors showed
that an infinite amount of classical communication (from an
untrusted Alice to a trusted Bob), is necessary to simulate
all EPR-steering correlations for any pure entangled state of
two qubits. For any experimentally accessible correlations,
the amount of classical communication required to violate the
LHS model will be finite, and moreover is one measure of the
strength of EPR steering.

In this paper, we provide the first demonstration of EPR-
steering correlations that provably require more than one bit
of FTL communication to simulate classically. We do this
by introducing and subsequently violating an inequality that
is derived assuming one bit of FTL communication is pos-
sible. Our experiment addresses the efficiency, locality, and
freedom-of-choice loopholes. The requirements for exper-
imentally testing our inequality while closing the efficiency
and locality loopholes are many, but we highlight two which
have interest outside this particular task. First, we achieve
fast-switching between three mutually unbiased measurement
bases with minimal losses by using a single Pockels cell. Sec-
ond, we introduce a modification of Klyshko’s method [45] to
accurately characterize the efficiencies for Bob’s two detec-
tors.

This paper is structured as follows. In Sec. II we discuss
how to close the loopholes in quantum nonlocality tests in
general, in EPR-steering tests more particularly, and in our
experiment allowing for one bit of FTL communication most
particularly. In Sec. III we introduce a general family of in-
equalities for testing communication-assisted EPR steering,
and in Sec. IV we derive a specific inequality for the case
when Bob can implement a set of three measurement settings.
Our derivation goes beyond the theory in Refs. [43, 44] in
that it includes the possibility of null results by Alice (as re-
quired for closing the efficiency loophole) and is optimized
for the experimental conditions (Alice’s efficiency, and the
three measurements Bob can switch between). In Sec. V we
present an experimental test of our EPR-steering inequality
using polarization-entangled photon pairs. Our experiment
closes the locality, freedom-of-choice, and efficiency loop-
holes. We observe a statistically significant violation of our
inequality, thus demonstrating correlations that—under the
standard EPR-steering assumptions—require more than one
bit of FTL information transmission.

II. CLOSING LOOPHOLES IN QUANTUM
NONLOCALITY TESTS

There are four standard loopholes for tests of quantum non-
locality in a general sense: the locality loophole, the freedom-
of-choice loophole, the efficiency (or detection) loophole, and
the memory loophole [46]. These loopholes are best known
for experimental tests of Bell-nonlocality with two parties,
where they have the following meaning. The locality loop-
hole is closed if and only if each party’s choice of setting is
space-like separated from the other party’s observation of the

measurement result. The freedom-of-choice loophole refers to
the requirement that the setting choices by the two parties are
‘free’, i.e. not influenced by any hidden variables [47, 48]. In
principle, the closure of this loophole can never be absolutely
assured, but in practice each party can use a state-of-the-art
random number generator for this purpose [49]. Closing the
efficiency loophole requires that all runs of the experiment are
included in the data analysis, not just a subensemble where
both particles are detected, for example [50]. This can be
achieved by having sufficiently high detection efficiency on
both sides. Finally, the memory loophole applies to the anal-
ysis of finite experimental data. If all trials are assumed to
be independent and identical it is possible for an adversary
to use information (memory) about past trials to try and in-
fluence or bias the outcomes of future trials. This can lead
to the assignment of greater confidence to a violation than is
warranted [46]. All four loopholes have been simultaneously
closed in a number of LHF Bell experiments [51–55].

EPR steering has the same loopholes, but asymmetrically.
Because Bob’s apparatus is trusted, efficiency only matters on
Alice’s side; it is permissible to consider the sub-ensemble
where Bob detects a particle. Moreover, under some condi-
tions it is only necessary to have one free measurement choice.
For example, it can suffice for Bob to make only a single gen-
eralized measurement [28]. An alternative scheme, whereby
Alice uses the same randomly generated setting as Bob, but
can find it out only after Bob’s photon is in his ‘lab’ (his
trusted space), was implemented in Ref. [27]. In that experi-
ment, Alice’s and Bob’s outcomes were space-like separated,
as required by the locality loophole, and it also closed the ef-
ficiency loophole (three years before the first LHF Bell exper-
iments [51–53]). Proving that an EPR-steering experiment is
not affected by any potential memory loophole has never been
done, as it would require the development of an entirely new
and nontrivial analysis method. In the current work we close
the efficiency, freedom-of-choice, and locality loopholes, but
we analyze our data in a way that assumes that experimental
trials are independent.

In our current experiment, we use measurement choice on
both sides, and so the LHF nature is ensured in a similar way
to the bipartite photonic LHF Bell experiments [52, 53], with
two random number generators and fast electro-optic switch-
ing. The main difference is that, as in Ref. [27], Bob has a
lab, as illustrated in Fig. 1, in which he trusts the operation of
his devices and his quantum mechanical description of them.
This lab is taken to be large enough that it contains the event
E defined as the intersection of the future light-cone emanat-
ing from the event j of Bob’s random number generation with
the world-line of the photon which Bob will ultimately detect.
Note this world-line only needs to be defined inside Bob’s lab
(where it is indeed defined because Bob trusts his apparatus)
in order to define E. While E is a point in space-time, not a
point in space, it is natural to define Bob’s lab to be station-
ary in the rest frame of his apparatus, so that E effectively
determines its extent. As in LHF Bell experiments, we must
trust that Alice’s and Bob’s random number generators make
their basis choices at the times and locations we set them to.
Finally, event E must not be in the future light cone of Al-
ice’s random number generation k, while the event b of Bob’s
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Figure 1. Minkowski diagram illustrating the relations between
spacetime events (black dots) at Alice (A), Bob (B), and the source
(S) that are needed to close the locality loophole, for a simple exam-
ple in which all parties are arranged collinearly. A trial begins when
the source emits an entangled pair of photons. If these photons travel
in fiber, they will travel at roughly 2/3 light speed, as indicated by the
slope of their world-lines. While the photons are in flight, measure-
ment settings k and j are randomly chosen, defining their associated
future light cones. The event E is the point in spacetime where the
world line of Bob’s photon intersects the light cone corresponding
his setting choice j. Bob’s ‘lab’ must be defined to include the event
E, and the event E must lie outside of the future light cone of Alice’s
setting k. Finally, Alice must complete her measurement and record
her outcome a outside of the future light cone of Bob’s outcome b.

measurement result becoming macroscopic (and thus, we’ll
assume, potentially ‘visible’ to an adversary) must not be in
the past light cone of the event a of Alice reporting her result.

The reason Bob needs a trusted space which includes event
E satisfying the above conditions is as follows. In a steering
scenario, Alice is not trusted, and she could have an accom-
plice, Fenella, who can act on her behalf anywhere except in
Bob’s trusted space. If Fenella were present at event E, or
any subsequent point on the world-line of the photon going to
Bob’s detectors, then she could make the state of that photon
depend on Bob’s measurement choice j. This violates one of
the fundamental assumptions behind EPR-steering inequali-
ties, that j is uncorrelated with Bob’s LHS. It would easily al-
low Alice to cheat as follows: Knowing the setting j, Fenella
could prepare the state so that Bob always gets the result +1,
and thus a steering inequality of the form we later consider
could attain its logically maximum value (and therefore vio-
late the EPR-steering bound) if Alice simply always says +1
too. This means that E has to be off-limits to Fenella. In other
words, it has to be in Bob’s trusted space. Note that this is in
contrast to Bell inequalities, where there is no LHS assump-
tion, and no trusted space.

The event E cannot be in the future light-cone of the gener-

ation of Alice’s setting k because if it were then Fenella could
make the state Bob is to detect depend on k, which again vi-
olates the fundamental assumption of EPR steering. In this
case, it is analogous to the Bell condition that the event of
Bob’s outcome b cannot occur in the future light-cone of the
generation of Alice’s setting k. Similarly, an untrusted Alice
cannot be allowed to delay the generation of her outcome a
until it is in the future light-cone of Bob’s result b appearing,
which in this case is exactly the same in EPR steering as it is
in the Bell case1. Finally, note that Bob’s detectors being in
his trusted space means that he is allowed to post-select on a
successful photon-detection.

The extra feature of the experiment reported here is that
we allow, in the theory, Alice to send one bit of information
FTL to her accomplice Fenella. This means that Fenella can
make, in any trial, Bob’s photon have one of two possible po-
larization states after she knows Alice’s setting k but before it
enters Bob’s lab. That the information would have to be sent
FTL is guaranteed by the fact that event E (at which is present
the photon Bob will detect) is space-like separated from Al-
ice’s random number generation k, so any event that can in-
fluence the state of the photon at E must also be space-like
separated from k. Because it rules out one bit of FTL commu-
nication as an explanation for EPR steering, our experiment is
stronger, and considerably more difficult to achieve, than that
of Ref. [27]. Finally, we note that it would not be possible
to do an experiment similar to the current one that rules out
more than one bit of FTL communication in a Bell scenario,
because—under the usual Bell assumptions in which both Al-
ice and Bob are untrusted—one bit of communication suffices
to simulate any correlations from projective measurements on
a singlet state [56].

III. EPR-STEERING INEQUALITY WITH BOUNDED
ONE-WAY COMMUNICATION

We consider an EPR-steering task with bounded one-way
communication. That is, the model to disprove is one with
a LHS for Bob, but where Alice can send a classical mes-
sage, taking one of d possible values, to Bob’s side to affect
his state before his detection. Here, d is an integer between
1 (no message) and n − 1, where n is the number of settings
Alice uses. There is no point considering d ≥ n because that
would allow perfect FTL communication of Alice’s setting k
to Bob’s side—technically, to event E—which would allow
perfect correlations even with the LHS assumption, and so
could never be disproven experimentally. It is convenient to
define d = 2H0 , where H0 is the number of bits of communica-
tion in a max-entropy sense. Recently, Refs. [43, 44] studied
the quantification of EPR steering according to the classical
message size c (i.e. H0) needed to simulate an assemblage

1 Both of these conditions (that involving E and k, and that involving a and b)
are automatically guaranteed by the conditions that are used in a LHF Bell
scenario, namely that each party’s choice of setting is space-like separated
from the other party’s observation. However, we note that these LHF-Bell
conditions are not necessary for a LHF test of EPR-steering correlations.
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without entanglement. Here an assemblage is a complete de-
scription of Alice’s ability to steer Bob in a given experiment
— the set of all Bob’s states to which she can steer, and as-
sociated probabilities, indexed by her settings and outcomes.
In Ref. [43] the set of assemblages which have an LHS model
when c bits of communication are sent from Alice to Bob was
shown to have an efficient semidefinite program (SDP) for-
mulation. They proved that infinite communication is neces-
sary to simulate the maximally entangled state. On the other
hand, in Ref. [44] the LHS-robustness was shown to provide
an upper bound on the amount of communication, and infinite
communication cost was shown to be necessary even for some
impure states that were not full-rank.

In this paper we adopt the approach of generalizing the lin-
ear steering inequalities of Refs. [26, 32, 57]. Bob is assumed
to have some LHS ρ, and—under this assumption—a viola-
tion indicates that Alice’s measurement choice must have an
effect on this state. Our formulation establishes a correlation
bound, hn

H0
, beyond which one would require H0 bits of su-

perluminal communication to replicate the effect of Alice’s
choice, in a LHS model. The bound is determined by op-
timizing the following LHS (no-entanglement) protocol. (1)
Bob sets his apparatus to measure the observable B̂ j with ran-
domly chosen setting index j ∈ {1, . . . , n}. (2) At the same
time (i.e. as a space-like separated event), Alice generates an
outcome ak (from a randomly chosen setting k ∈ {1, . . . , n}).
(3) Alice sends an FTL message l ∈ {1, . . . , d} to her accom-
plice, Fenella, located near Bob’s laboratory. (4) Knowing l,
Fenella generates a state |l〉F, one of d possible states {|l〉F}dl=1
she could prepare, and feeds it into Bob’s laboratory. Note
that the states {|l〉F}dl=1 need not be mutually orthogonal, even
for d = 2.

Two-outcome measurements yield a binary variable, +1 or
−1. Physically, in our experiment, this corresponds to a click
in one of two detectors, at each side2. Due to the limited
transmission and detection efficiency of the photons, a third
outcome 0 has to be considered to represent no detection. Ac-
cording to the LHS model, Bob trusts his apparatus, includ-
ing his two detectors, so he can discard those experimental
trials where he fails to detect a photon. That is, Bob can
make the fair-sampling assumption without opening the ef-
ficiency loophole, and describe his output by the binary vari-
able b j ∈ {+1,−1}. However, because Alice is not trusted,
she is not allowed to discard any results, and her output is a
ternary variable ak ∈ {+1, 0,−1}. After all measurement trials
are complete, Alice sends her data to Bob. Bob discards all
data for trials in which he did not detect an outcome, and then
he computes an appropriate steering correlation function S n
and checks whether the inequality

S n ≤ hn
H0

(1)

is violated for the appropriately calculated bound hn
H0

. If so,
they have demonstrated EPR steering requiring more than H0
bits of FTL communication. Note that the dependence on n

2 It is possible for both detectors on either side to click in the same trial. We
discuss how we treat those events in Section V.3.

here is shorthand for dependence on the set of n observables
{B̂ j}

n
j=1 that Bob performs. Neither the correlation function

nor the bound make any assumptions on the nature of the mea-
surements that Alice performs, apart from their having out-
comes ak ∈ {+1, 0,−1}.

The task, then, is to choose a suitable steering correlation
function, or family of correlation functions, and to compute
the bound that can be achieved with an LHS model supple-
mented by allowing Alice H0 bits of FTL communication.
We design the steering correlation functions specifically for
our experiment, in which the two-photon state shared by Al-
ice and Bob is close to a maximally entangled singlet state
|Ψ−〉 that has been subjected to loss, and Alice’s n measure-
ment axes are intended to be the same as Bob’s. For sim-
plicity, we number the corresponding pairs of axes the same,
and label the directions corresponding to the results (±1) in
opposite directions. Thus, Alice’s and Bob’s results will be
maximally correlated if they choose the same setting. Such
correlations are best for demonstrating steering [32]. Also,
for all j and k the mean of b j and ak will be close to zero,
and |b j| is identically 1 (because Bob can post-select). Fi-
nally, we aim to implement a set of measurements {B̂ j} with
a symmetry property that ensures that no measurement is
special. Specifically, we choose a set of measurements for
which, given any two measurements, there exists a rotation
of the axes that can take the first to the second while leaving
Bob’s total set of measurement directions unchanged. That is,
∀ j, j′ ∃Û : Û†B̂ jÛ = B̂ j′ and {Û†B̂iÛ}i = {B̂i}i. (As a con-
crete example, the set of measurements that contains the three
Pauli observables {σ̂x, σ̂y, σ̂z} satisfies this symmetry require-
ment.)

Based on these considerations we can impose, with almost
no loss of effectiveness, simplifying symmetries on the form
of our correlation function: invariance under interchanging
the results ±1 for a and b jointly; and invariance under permu-
tation of setting values j and k jointly. Imposing these symme-
tries means that the function weighs all correlations equally,
and thus we obtain a family of steering correlation functions
with only one real parameter, rH0 :

S n (rH0 ) =
1
n

n∑
j, k=1

δ j,k

(
〈ak B̂ j〉 − rH0〈|ak |〉

)
. (2)

In Eq. 2, Alice’s result ak is to be considered a random vari-
able, and so is Bob’s result b j, but we represent the latter by
its associated Hermitian operator B̂ j to emphasize that (unlike
in a Bell correlation) we trust this description of Bob’s mea-
surement process. That is, deriving the EPR-steering bound
on this correlation (below) makes direct use of the operator
properties of the B̂ j. Note that the use of the above symme-
tries in motivating the above correlation function is for sim-
plicity only; the validity of the inequality we will ultimately
derive does not depend on assuming that these symmetries in
the state and measurement settings are satisfied.

Once the parameter rH0 is chosen, the bound hn
H0

can then
be calculated via

hn
H0

= max
α, `, {|l〉F}dl=1

1
n

n∑
j=1

δa,α( j)

−rH0 |a| +
d∑

l=1

δl,`( j) a 〈l|FB̂ j|l〉F

 ,
(3)
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where ` indicates a deterministic function3 from {1, . . . , n} to
{1, . . . , d} (recall d = 2H0 ), which specifies the strategy for
Fenella to prepare the states {|l〉F}dl=1 related to Alice’s mea-
surement setting k, and α indicates a deterministic function
from {1, . . . , n} to {+1, 0,−1}, which determines Alice’s out-
comes. Note that the linearity of the correlation function with
respect to Bob’s observables means that it can always be max-
imized by a deterministic strategy, allowing us to calculate the
bound in this way.

We define Alice’s heralding efficiency through the method
outlined by Klyshko [45]. That is, it is the probability with
which a detection by Bob heralds a detection by Alice. It
is given by the expression 1

n
∑n

k=1〈|ak |〉, and in the below, we
will simply call this Alice’s efficiency, ηA. The purpose of
rH0 is to make the steering demonstration as loss-tolerant as
possible. That is, to allow violation for a value of Alice’s
heralding efficiency which is as small as possible given the
other parameters in the experiment (the degree of mixture in
the lossy maximally entangled singlet state, the value of H0,
and the measurement axes).

IV. INEQUALITIES FOR OCTAHEDRAL SETTING
ARRANGEMENT

In our experiment, we use n = 3, the minimum number re-
quired to rule out LHS models with up to 1 bit of FTL commu-
nication. We use an octahedral arrangement for the measure-
ment axes. That is, the labels {1, 2, 3} correspond to states |0〉,

Figure 2. Sketch of Bob’s three ideal measurement directions (green
arrows represent the +1 eigenstate of each measurement setting) and
Alice’s optimized cheating ensembles generated by Fenella {|l〉F}
(purple arrows) in the Bloch spheres. (a) Without any information
transferred (H0 = 0), there is only one optimized cheating state |1〉F
for all three measurement directions; (b) When H0 = 1 bit messages
are transferred, there are many possible optimal cheating strategies.
One such strategy is as follows: if Alice measures in setting k = 1,
she sends Fenella the message l = 1 and Fenella prepares the state
|1〉F. Otherwise, Alice sends the message l = 2 and Fenella prepares
the state |2〉F.

3 In principle, Alice and Fenella could update this function based on the
results of past measurement trials. However, since we assume that all trials
are independent and identical, we do not consider that here.

|+〉, and |+i〉, as illustrated in Fig. 2. This simplifies the deriva-
tion of the inequality, allowing us to obtain analytical bounds,
which we present in this section. In a later section, where we
allow for systematic and statistical errors in Bob’s settings,
we obtain the bounds numerically. In both cases we find the
bounds by an exhaustive search over deterministic strategies.
We begin by considering the no message (H0 = 0) case, for
which optimising rH0 gives the same loss-tolerant inequalities
previously derived for EPR-steering with no FTL message as-
sistance [26, 57].

IV.1. Derivation of the inequality for the no-message case

If Alice, the untrusted party, had perfect detectors, she
could declare non-null results for every trial and for all n set-
tings, so that we would have 〈|ak |〉 = 1, and we do not need the
parameter r0. When there is no message transferred (H0 = 0),
Fenella generates the same state {|l〉F} (l = 1) for all three set-
tings. The optimal orientation is towards the face-center of
the octahedron used to define three measurement axes, as de-
lineated in Fig. 2(a). This leads to the following EPR-steering
inequality

1
3

3∑
j, k=1

δ j,k〈ak B̂ j〉 ≤

√
3

3
, (4)

The bound h3
0 =

√
3/3 coincides with the inequality previ-

ously given in Ref. [32].
If Alice sometimes reports null results, the parameter r0

is now relevant, and a new search for the optimal solutions
for α( j) and {|l〉F} must be undertaken for each value of r0
in Eq. (3) (Note that in this no-message case, the function
` is trivial, so no search over this is needed). In addition,
we wish to choose r0 optimally for a given value of ηA, Al-
ice’s efficiency. Note that while we assume, for the purpose
of optimizing r0, that Alice’s efficiency is independent of k
(ηA = 1

n
∑n

k=1〈|ak |〉), and that Alice’s two detectors have the
same efficiency, these assumptions are not required for the in-
equality itself to be valid. An optimal r0 for a given ηA is
the one which allows the inequality to be violated most easily
with our model of the state, a loss-depleted Werner state [58]

Wµ = µ|Ψ−〉〈Ψ−| + (1 − µ)I/4 (5)

with singlet-proportion µ ∈ [0, 1]. For such a model, the resid-
ual between the left-hand-side and right-hand-side of Eq. (1)
is given by

R3
0 = ηA(µ − r) − h3

0(r). (6)

Maximizing this residual for any ηA (which is equivalent
to minimizing the µ at which a positive residual is possible),
we find that the optimal r0, and the corresponding bound, is
piecewise constant, changing at the points ηA = 1/3 and 2/3.
Examining these points analytically, and using the ηA = 1
analysis above, we are able to find the relevant values of r0,
and the bound, analytically. We show how this is done for one
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example in Appendix A. We find

r0 =


√

2 − 1 if 1
3 ≤ ηA <

2
3 ,√

3 −
√

2 if 2
3 ≤ ηA < 1,

h3
0 =

 2−
√

2
3 if 1

3 ≤ ηA <
2
3 ,

3
√

2−2
√

3
3 if 2

3 ≤ ηA < 1.
(7)

If Alice reports too many null results, so that ηA < 1/3, the
optimal gain factor is r0 = 1, and h3

0 = 0. This means that the
inequality is impossible to violate. This is because, below this
detection-efficiency threshold, the steering correlation func-
tion S 3 cannot be positive even with the maximally entangled
states [26].

IV.2. Derivation of the inequality when one FTL bit is
transferred

Now allowing Alice the assistance of an H0 = 1 bit mes-
sage, we must include the function ` : {1, 2, 3} → {1, 2} which
allows Fenella to choose a state from {|l〉F}2l=1 given Alice’s
measurement setting k. If Alice declares a non-null result in
every round, then we find the inequality

1
3

3∑
j,k=1

δ j,k〈ak B̂ j〉 ≤
1 +
√

2
3

, (8)

with the optimized parameter r1 = 0. Here, the bound
h3

1 = (1 +
√

2)/3 can be achieved by appropriately choos-
ing {|l〉F}2l=1, α( j) and `( j). For instance, the optimal strat-
egy for Alice/Fenella with α( j) = +1 for all j, and `(1) = 1,
`(2) = `(3) = 2 is shown in Fig. 2(b).

Turning now to the case of where Alice has to deal with loss
(or is trying to cheat by declaring null results), the maximiza-
tion has to be done including the parameter r1, and r1 has to
be chosen optimally. Again, we find the solution analytically:

r1 =
√

2 − 1, h3
1 =

4 − 2
√

2
3

if
2
3
≤ ηA < 1. (9)

Now, when Alice’s efficiency is less than 2/3, the optimal
r1 = 1 and h3

1 = 0, leading to a trivial (unable to be violated)
inequality. This is as expected, as the assistance of transferred
messages can make it easier for a lossy Alice to find a cheat-
ing strategy, which in turn means more stringent conditions
for her efficiency to demonstrate EPR-steering. The residual
from Eq. (1),

R3
1 = ηA(µ − r) − h3

1(r), (10)

shows that to have the Rn
1 > 0, the required purity µ→ 1 as ηA

approaches 2/3 from above. The details of the optimization
procedure leading to Eqs. (8) and (9) can be found in Ap-
pendix A. When the measurements actually implemented by
Bob are different from the above ideal case, we have to reop-
timize the parameters rH0 to obtain the corresponding bounds;
this will be covered in more detail in Sec. V.2.

Figure 3. Experimental test of EPR steering with one bit of FTL
communication. (a) The source produces polarization-encoded pho-
ton pairs in the maximally entangled singlet state via type-II sponta-
neous parametric downconversion. (b) Alice’s and Bob’s labs where
the photons’ polarizations are measured; a Pockels cell allows fast
switching between three mutually unbiased measurement bases. (c)
Layout of the experiment, showing the relative locations of Alice
(A), Bob (B) and the source (S), overlaid on a floor plan of the sec-
tion of the building where the experiment took place. The spacetime
event E′ (black dot) is our conservative estimate of the event E (see
Sec. V.1 for details). At the time of E′, tE′ , the region of space inside
the future light cone of Bob’s setting choice j is represented by the
green circle, and the region of space inside the future light cone of
Alice’s setting choice k is represented by the purple circle. The faded
rings outside the green and purple circles represent the uncertainties
on their radii. We define Bob’s lab (in which he trusts his character-
ization of his equipment) to contain his measurement apparatus plus
the final 31.6 ± 0.4 m of fiber leading to his measurement appara-
tus. FPD: fast photodiode; SMF: single-mode fiber; BD: polarizing
beam displacer; PPKTP: periodically poled potassium titanyl phos-
phate; QRNG: quantum random number generator; PC: Pockels cell;
SNSPD: superconducting nanowire single-photon detector.

V. EXPERIMENTAL METHODS

We perform a test of our new EPR-steering inequality with
polarization-entangled photon pairs that are distributed to two
distant measurement stations we name Alice and Bob.

The entangled pair source [53] is displayed in Fig. 3(a). A
Ti:Sapphire laser emits a beam of pump pulses with wave-
length 775 nm at a repetition rate of 80 MHz. A small fraction
of the beam is picked off and sent to a fast photodiode (FPD)
which sends an electronic synchronization pulse to both Alice
and Bob once every 960 laser pulses. The remainder of the
pump beam is sent through a single-mode fiber to clean up its
spatial mode. After exiting the fiber, the beam is gently fo-
cused and prepared in the diagonal polarization state before it
is equally split into two paths by a polarizing beam displacer
(BD1). In each path, photon pairs are produced via type-II
spontaneous parametric downconversion in a 20 mm-long pe-
riodically poled potassium titanyl phosphate crystal placed at
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the pump beam’s focus. Polarizing beam displacers BD2 and
BD3 and a series of half waveplates are used to recombine the
beams into two paths (with one photon in each path). A sil-
icon window filters out the pump beam, then each photon is
coupled into single-mode fiber over which it is sent to Alice’s
or Bob’s measurement station. By controlling the polarization
rotation that occurs inside each fiber, we ensure that the pair
arriving at Alice’s and Bob’s measurement stations is in the
maximally entangled singlet state 1

√
2
(|H〉|V〉 − |V〉|H〉), where

|H〉 (|V〉) denotes horizontal (vertical) polarization.
The measurement stations at Alice and Bob are nominally

identical, and one of them is represented in Fig. 3(b). We per-
form measurement trials at a rate of roughly 83 kHz – each
electronic synchronization pulse from the source triggers a
new measurement trial. At the beginning of each trial, a pair
of quantum random number generators [49, 59] produces a
pair of random bits to determine the setting for that trial. If
these two output bits are 00, 01, or 10, we measure in setting
1, 2, or 3 respectively, and the setting choice determines which
voltage is applied to a Pockels cell. (One fourth of the time the
two output bits will be 11; we ignore these trials since we want
each of the three settings to occur with equal probability.)
When a photon arrives at a measurement station, it is coupled
into free space and transmitted through four waveplates and a
Pockels cell before its |H〉 and |V〉 components are separated
with a polarizing beam displacer. Each output of the beam dis-
placer is then coupled into single-mode fiber where it is sent to
one of two superconducting nanowire single-photon detectors
(SNSPDs), labelled4 with the outcomes ‘+1’ and ‘-1’. Output
pulses from the SNSPDs are amplified before being recorded
by a time tagger. We map the computational basis {|0〉, |1〉}
to polarization states with the assignments |0〉 → |V〉 and
|1〉 → |H〉. The waveplate angles and Pockels cell voltages
are set to (ideally) realize the measurements in Fig. 2. That is,
ideally, setting 1 corresponds to a measurement in the {|0〉, |1〉}
({|V〉, |H〉}) basis, setting 2 to the {|+〉, |−〉} ({|D〉, |A〉}) basis,
and setting 3 to {|+i〉, |−i〉} ({|L〉, |R〉}). Here, |D〉, |A〉, |L〉, and
|R〉 correspond to the diagonal, antidiagonal, left-circular, and
right-circular polarization states. We provide full details of
how we determine which waveplate angles and Pockels cell
voltages to use in Appendix B.

V.1. Locality conditions

In our experiment, the pair source and Alice’s and Bob’s
measurement stations are arranged in a triangular configura-
tion (Fig. 3(c)). Before assessing if the locality conditions
are met, we must first define the extent of Bob’s lab, i.e. the
size of the area in which Bob trusts his characterization of his
equipment, which is defined by the spacetime event E. Recall
that the spacetime event E is defined as the point in space-time
at which the light cone emanating from Bob’s random number

4 In Fig. 3(b) we denote the labelling for Bob’s measurement apparatus,
where detections in the transmitted output port of the BD are labelled ‘+1’
and detections in the displaced output port are labelled ‘−1’. In Alice’s
measurement apparatus, the labels are swapped.

generators (and potentially carrying information about Bob’s
measurement setting choice) intersects with the world line of
the photon travelling to Bob’s lab (Fig. 1). One piece of infor-
mation we need to find E is the exact path that Bob’s photon
takes while it is inside his lab. Because Bob’s photon travels in
fiber along the hallways and through the ceiling of the build-
ing we run the experiment in, we only approximately know
where the fiber lies. We do, however, have an accurate char-
acterization of the position of the Pockels cell in Bob’s mea-
surement setup, as well as the time that Bob’s photon arrives
at his Pockels cell. Therefore, we make the conservative as-
sumption that, inside his lab, Bob’s photon travels in a straight
line in fiber between the source and his Pockels cell, which is
shorter than the true path that Bob’s photon actually takes. We
then calculate the position of the spacetime point of the event
E′ (Fig. 3(c)), which would be equivalent to E if this assump-
tion about the fiber inside Bob’s lab were true, and we define
Bob’s lab to include the point E′. Defining Bob’s lab in this
way gives us a conservative overestimate of the size of Bob’s
lab (and thus ensures it contains the point E). We display E′

and Bob’s setting light cone at time tE′ (i.e. the time of event
E′) in Fig. 3(c). The point E′ is 31.6 ± 0.4 m from Bob’s ran-
dom number generators, so we define the trusted equipment
in Bob’s lab to include that final length of fiber.

To close the locality loophole, there are two conditions that
need to be met. First, a light-speed signal carrying information
about Alice’s measurement setting k must not be able to reach
Bob’s lab before the time of the event E. Our definition of E′

guarantees that E′ occurs later in time than E. In addition, E′

is closer to Alice’s lab than any part of the fiber inside Bob’s
lab, and this guarantees that the distance between Alice’s lab
and E′ is shorter than the distance between Alice’s lab and E.
As a result of these two facts, any signal carrying informa-
tion about k needs to travel faster to influence E than it does
to influence E′, and this implies that if k and E′ are space-
like separated then k and E must be space-like separated as
well. Alice’s first random number generator fires 230 ± 2 ns
before time tE′ , and we consider this the earliest moment that
a light speed signal containing information about Alice’s set-
ting choice could begin propagating from her lab. Hence, at
time tE′ , the light cone with information about Alice’s setting
k has traveled at most 52.1±0.6 m from Alice’s random num-
ber generators—and has not reached Bob’s lab—ensuring that
this first locality condition is satisfied (Fig. 3(c)).

The second condition that needs to be satisfied is that
Alice’s measurement outcome a must be recorded before
the light cone carrying information about Bob’s outcome b
reaches Alice. We consider Alice’s measurement complete
(and her guess of Bob’s outcome recorded) the moment the
amplified electronic pulse from either of her detectors reaches
her time tagger. We define the earliest possible time that Bob’s
measurement could be considered complete as the moment
that his photon impinges on one of his SNSPDs. With these
definitions, Alice records her measurement outcome at least
44.8 ± 1.3 ns before Bob completes his measurement, ensur-
ing that the second locality condition is satisfied.
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V.2. Tomography on Bob’s measurements and relevant bounds

To obtain rigorous EPR-steering inequalities we need to
take into account that the measurements actually implemented
by Bob are different from the ideal ones assumed for the
analytical bounds obtained above. To account for this, we
perform a parametric bootstrapping measurement tomogra-
phy routine which provides us with estimates of the positive-
operator valued measures (POVMs) representing each of the
measurement settings implemented by Bob. To be conserva-
tive, we constrain our estimates of Bob’s measurements to be
both noiseless and projective (since this is the optimal sce-
nario for a dishonest Alice5.), meaning each POVM can be
represented by the Bloch vector that represents the eigenstate
corresponding to the +1 eigenvalue of the measurement oper-
ator. Our tomography method also provides estimates of the
uncertainties on each of these Bloch vectors, in the form of
an angular uncertainty on the direction that they point. We
provide our best estimates of the Bloch vector representing
each of Bob’s measurement settings, as well as their uncer-
tainties, in Table I. We illustrate these Bloch vectors and their
uncertainties with cones in Fig. 4; the region enclosed by
each cylinder represents the region that we expect—with five-
sigma certainty—the actual Bloch vector representing that
measurement setting to lie in. Full details of our measurement
tomography technique are provided in Appendix C.

Table I. Results of tomography on Bob’s measurements.

Setting 1 Setting 2 Setting 3

X −0.0502 0.9984 0.1019

Y 0.0419 0.0559 0.9944

Z 0.9978 −0.0089 −0.0276
Angular uncertainty, σ j (rad) 0.0114 0.0114 0.0114

Using the above tomographic results, we recalculate Al-
ice’s optimal cheating ensembles based on Bob’s real mea-
surements, as delineated in Fig. 4 (a) and (b). For a completely
rigorous EPR-steering test we must also include uncertainties
in our characterization of Bob’s actual settings, at the five-
sigma level; see Appendix C.3 for more details. By using
high-efficiency detectors, Alice’s average heralding efficiency
over all three settings — as defined at the end of Section III to
be ηA = 1

3
∑3

k=1〈|ak |〉— is measured to be (74.8 ± 0.1)%. For
this efficiency level and for Bob’s measurements (including
errors), the gain factor rH0 and the bound hn

H0
are reoptimized,

yielding

r0 = 0.4046, h3
0 = 0.2548,

r1 = 0.5930, h3
1 = 0.2713. (11)

5 Alice and Fenella’s strategy of controlling the state that is sent to Bob in
order to influence his measurement outcomes will work best if Bob’s mea-
surements are both noiseless and projective. Adding noise to Bob’s mea-
surements only decreases how accurately his outcomes can be predicted,
which in turn decreases Alice’s and Fenella’s probability of success [25]

We can now ask how good must our effective state prepa-
ration (i.e. purity) and propagation (i.e. loss avoidance) be if
we wish to violate a communication-assisted-EPR-steering in-
equality. In our experiment, we created, as closely as possi-
ble, a singlet state at the source. After distribution to Alice
and Bob, this is well approximated by a loss-depleted Werner
state. In Fig. 5, we display, as a function of Alice’s effi-
ciency, the minimum required purity µmin = hn

H0
/ηA + rH0 for a

loss-depleted Werner state to demonstrate EPR steering when
Bob’s measurement axes are ideal (black curves), and with
the actual settings implemented in our experiment, allowing
for uncertainties (red curves) without and with H0 = 1 mes-
sage assistance. The horizontal dashed lines give the predicted
minimum required singlet-proportion parameters µmin for Al-
ice’s average heralding efficiency ηA = (74.8± 0.1)% for each
case. We predict that we require a minimum pure-fraction
µmin of 0.745 and 0.956, to demonstrate EPR-steering with
no message and H0 = 1 bit of messages transferred, respec-
tively. Achieving a state preparation purity well above 0.956
might not seem too onerous, since visibilities > 99.6% in the
H/V and D/A bases have been demonstrated for Bell experi-
ments [53]. However it must be emphasized that the figure of
0.956 relates to the effective state purity; imperfections in the
polarization rotations by Alice’s and Bob’s Pockels cells are
the dominant source of effective impurity in our experiment.

V.3. Results

Here we establish the correspondence between the EPR-
steering inequality (1) and the event counts in the experiment.
During each trial, Alice and Bob randomly choose among one
of three measurement settings then write down their own re-

Figure 4. Characterization of Bob’s three actual measurement di-
rections (green arrows) and Alice’s optimized cheating ensembles
generated by Fenella {|l〉F} (purple arrows) in the Bloch sphere. The
green arrows represent our best estimate of Bob’s actual measure-
ment settings and with five-sigma certainty, the actual Bloch vectors
representing each measurement setting lie inside the corresponding
cones of uncertainty. (a) Alice’s optimal cheating state |1〉F if no in-
formation is transferred (H0 = 0); (b) Alice’s optimal cheating states
|1〉F and |2〉F if an H0 = 1 bit message is transferred. Details of how
we calculate Alice’s optimal cheating ensembles are summarized in
Appendix C.3.
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Figure 5. Loss-dependent EPR-steering bounds with one-way com-
munication assistance. The solid curves are the theoretical bounds
for required singlet-proportion to demonstrate EPR-steering with-
out message assistance under different measurement conditions. The
dashed curves are the required purity with H0 = 1 bit of messages
assistance. The vertical dashed line represents Alice’s measured effi-
ciency ηA = (74.8 ± 0.1)%.

sults. Alice (Bob) can record either a ‘+1’ if she (he) observes
a detection event on her (his) single H (V) detector or a ‘-1’ if
she (he) observes a detection event on her (his) single V (H)
detector. In addition, Alice can record a ‘0’ to represent no
detection. In some experimental trials both of Alice’s and/or
Bob’s detectors click6, and Alice and Bob treat these trials dif-
ferently. If both of Alice’s detectors click, Alice records the
outcome ‘0’ for that trial. If both of Bob’s detectors click,
Bob randomly chooses to record either ‘+1’ or ‘-1’ as the out-
come for that trial7, a procedure introduced and justified in
Ref. [25]. We use ‘ab|k j’ to express the trial outcome, which
indicates that Alice records outcome a in setting configuration
k and Bob records outcome b in setting configuration j, and
we use Nab|k j to denote the total number of times we obtain
the outcome ab|k j.

Bob’s task is now to use his and Alice’s data to calculate
S̃ 3(rH0 ), which is his experimental estimate of the steering
correlation function S 3(rH0 ), Eq (2). First, Bob discards data
from all trials in which he and Alice measure in different bases
(i.e. all trials for which k , j), as well as from all trials in
which he does not detect a photon. Because Bob trusts his
characterization of his measurement apparatus, and therefore
his characterization of his measurement efficiencies, he can
normalize the data based on these efficiencies to estimate what

6 Of all trials in which Bob records at least one click, Alice measures two
clicks 0.26% of the time, and Bob measures two clicks 0.24% of the time.

7 Intuitively, this can be understood as Bob randomly choosing one of the
two photons he received to be ‘the’ photon for that trial, and this is con-
sistent with the outcome Bob reports when two photons are received by a
single detector (which may also happen), since in that case both photons
have the same outcome.

data would have been collected if his measurement apparatus
worked with unit efficiency. Bob estimates the normalized
data by computingNab| j j = Nab| j j/ηB(b| j). Here ηB(b| j) is the ef-
ficiency with which Bob’s outcome b detector will click when
he measures in setting j — it includes the transmission effi-
ciency of the path photons take from the edge of Bob’s lab
to his polarizing beam displacer, the transmission efficiency
from the output of the beam displacer to the outcome-b detec-
tor, and that detector’s internal efficiency. We find that these
efficiencies depend on both the outcome and the measurement
setting.

To characterize these efficiencies we modify Klyshko’s
method [45] (which applies to systems with two photons
and two detectors) to apply to our two-photon, four-detector
setup. We apply this method to data that is independent from,
but acquired in parallel with, the data used to test the steer-
ing inequality (1). A full description of our method is pro-
vided in Appendix C.4. After normalizing the data in this
way, Bob calculates the normalized total number of trials
in which both he and Alice measure in setting j, given by
N j j = N+1+1| j j+N−1+1| j j+N0+1| j j+N+1−1| j j+N−1−1| j j+N0−1| j j.
Now, Bob is ready to calculate Ẽc

j , which is his estimate of
〈a jB̂ j〉:

Ẽc
j =
N+1+1| j j +N−1−1| j j − N−1+1| j j − N+1−1| j j

N j j
, (12)

and he can also calculate Ẽa
j , which is his estimate of |a j|:

Ẽa
j =
N+1+1| j j +N+1−1| j j +N−1+1| j j +N−1−1| j j

N j j
. (13)

Finally, Bob’s estimate S̃ 3(rH0 ), and the experimental EPR-
steering inequality, are given by:

S̃ 3(rH0 ) =
1
3

3∑
j=1

(
Ẽc

j − rH0 Ẽa
j

)
≤ h3

H0
. (14)

Our data were taken in 90 one-minute chunks, and over the
total dataset there are 936,848 experimental trials in which
at least one of Bob’s detectors clicks. By using the parame-
ters in Eq. (11), the experimental residuals between the left-
hand-side and right-hand-side of the above inequality (14) are
R3

0 = 0.1646 ± 0.0003 and R3
1 = 0.0071 ± 0.0003. The un-

certainties here represent the statistical uncertainty caused by
Poissonian counting statistics. These two violations are 478
and 25 standard deviations above zero, respectively. While we
violate both inequalities by a very large number of standard
deviations, an analysis method that closes the memory loop-
hole could reduce the apparent statistical significance of this
result. However, it is important to remember that the deriva-
tion of these inequalities includes our estimates of the uncer-
tainty on our characterization of Bob’s measurement settings
up to the five-sigma level. Thus, our confidence in these two
inequality violations is also at the five-sigma level (and not
478 or 25 sigma). This significant violation of the H0 = 1 in-
equality conclusively demonstrates EPR-steering correlations
that require more than one bit of FTL communication to sim-
ulate classically.
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VI. DISCUSSION

Our experiment implies that if the mechanism of account-
ing for the quantum correlations is steering (that is, if Alice’s
measurement induces wave-function collapse in Bob’s lab)
then that mechanism requires more than one bit of informa-
tion to be transmitted, faster than light, from Alice’s to Bob’s
lab. If one is willing to accept that information is in fact being
transmitted faster than light, it is interesting to ask exactly how
fast this information needs to travel. We calculate the speed
at which a signal would need to travel if Alice sent it from
her lab the moment her setting choice k was chosen and it was
received by Fenella at the spacetime point E′ before Bob’s
photon enters his lab — this is a lower bound on the speed a
signal would need to travel between Alice’s QRNGs and the
spacetime point E. (See Sec. V.1 for the distinction between
these two events.) The point E′ is 161.3 ± 1.5 m from Alice’s
random number generators, and Alice’s first random number
generator fires 230±2 ns before time tE′ . Thus, this hypothet-
ical FTL signal would have to travel at least (9.84±0.14)×108

m/s, or 3.28 ± 0.05 times the speed of light8.
In order to fairly evaluate the strength of the nonlocality

between Alice and Bob in our experiment, we compare R3
0

and R3
1 with their corresponding Tsirelson bounds T 3

0 and T 3
1 .

Like the maximum quantum violation of the Clauser-Horne-
Shimony-Holt Bell inequality 2

√
2 [60], the Tsirelson bounds

represent the maximum allowable values according to quan-
tum theory, which can be achieved with a Bell state (µ = 1)
and ideal projective measurements with perfect detection effi-
ciency at Alice (ηA = 1). Recall that if rH0 = 0, the bounds
for the H0 = 0 and H0 = 1 inequalities are h3

0 =
√

3/3 and
h3

1 = (1+
√

2)/3 respectively. Thus, the maximum possible vi-
olations allowed by quantum mechanics are T 3

0 = (3 −
√

3)/3
and T 3

1 = (2−
√

2)/3. Comparing our results to the maximum
violations, we see that R3

0/T
3
0 ≈ 0.389 and R3

1/T
3
1 ≈ 0.037,

respectively. The smallness of the latter number reflects the
difficulty of demonstrating the violation of communication-
assisted EPR-steering, limited mainly by Alice’s total photon
detection efficiency being only ∼75%.

The conceptualization of EPR-steering as a quantum in-
formation task—to verify entanglement in the partial absence
of trust—was key to its modern formulation [5] and its gen-
eralization to multi-party networks [61]. Pioneering works
showed theoretically [57] and expermentally [26, 31, 62]
that, through the use of multiple measurement settings, EPR-
steering could be robust to loss even in the presence of some
noise. Here, by working to minimize both noise and loss,
we have been able to show the robustness of EPR steering

8 This figure is a lower bound on the speed of the signal in the rest frame of
the building containing the two laboratories. In a different reference frame,
a different value would be inferred and, because the speed is superluminal,
it could be anything from just above the speed of light to beyond infinite
(backwards-in-time information transmission). This can be contrasted with
the experiment of Salart et al. [63], which gave, under certain assumptions,
a lower bound on the speed v of superluminal information transmission in
a Bell test, regardless of the preferred frame.

to (hypothetical) FTL communication. Our communication-
assisted and loss-tolerant EPR-steering inequalities may have
applications in secure entanglement distribution with un-
trusted parties. In particular, in the situation where the parties
are not space-like separated, adversarial communication need
not be FTL and so need not be hypothetical. To achieve the
greatest security in such schemes, it will also be important to
analyze the data in a way that does not assume experimental
trials are independent. Otherwise, a malicious actor could ex-
ploit the memory loophole and compromise the security of the
protocol.

It is natural to ask if one can demonstrate EPR-steering cor-
relations requiring an even larger amount of FTL communica-
tion to simulate classically. This is certainly possible in prin-
ciple. In general, if one is performing measurements on an
entangled state of two qubits, one needs to perform an exper-
iment with at least 2H0 + 1 choices of measurement setting
in order to exclude FTL messages of up to H0 bits. As the
number of measurement directions increases, some measure-
ments necessarily become closer to each other and therefore
the minimum visibility required to demonstrate an inequality
violation increases. In addition, for a large enough number of
settings, each measurement station will require multiple Pock-
els cells (or some other method of quickly switching between
settings). For the specific case of ruling out messages of size
H0 = 2, five measurement settings are needed. One could
choose these settings to have Bloch vectors corresponding to
five of the vertices of a dodecahedron (similar to how in our
three setting experiment we chose settings with Bloch vectors
corresponding to three of the vertices of an octahedron). With
the proper driving electronics, one could in principle use a
single Pockels cell to implement fast switching between these
five settings. A more significant challenge for ruling out mes-
sages of size H0 = 2 bits is that the minimum efficiency re-
quired for such an experiment is 4/5, much higher than the
2/3 threshold needed for H0 = 1 bits, and at the limit of what
has currently been demonstrated in loophole-free experiments
with entangled photons [64]. Finally, there are many open
questions about the role of communication in multipartite or
high-dimensional EPR-steering scenarios, where many differ-
ent communication patterns can be considered.
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Appendix A: The derivations of Eqs. (7), (8) and (9)

To derive the expression of Eq. (7) in the main text, we
first rewrite the bound h3

0 in this scenario. When there is no
message transferred, only one state |1〉F can be generated by
Fenella for all three settings, and the deterministic function `
in Eq. (3) is also fixed from {1, 2, 3} to {1}, thus

h3
0 = max

α

1
3

3∑
j=1

δa,α( j)

(
−r0|a| + a〈1|FB̂ j|1〉F

)
. (A1)

where α still indicates a deterministic function from {1, 2, 3} to
{+1, 0,−1}. It has been proven that the optimal deterministic
bounds related to the second term in above equation is [57]

g3
0 = max

α

λmax

1
3

3∑
j=1

α( j)B̂ j


 , (A2)

where λmax denotes the maximum eigenvalue of the operator
within the following brackets. Then, for a lossy maximally
entangled singlet state, the optimal r0 in the first term should
be chosen by

arg min
r0

[
max
α

(
g3

0 − r0
m
3

)
− ηA(µ − r0)

]
. (A3)

where m is the total number of events when α( j) , 0. For
example, if Alice reports null for two of the three settings, e.g.,
α(1) = α(2) = 0, it means that m = 1. Thus, for a given ηA, the
parameter r0 and the bound h3

0 can be optimized by searching
all possible cases numerically. It is reasonable that several
forms of α( j) can give the optimized bound. For example,
when 2/3 ≤ ηA < 1, both α(1) = 0, α(2) = α(3) = +1 and
α(1) = −1, α(2) = +1, α(3) = 0 can get the expressions in
Eq. (7).

When we introduce the classical messages into the above
scenario, the derivation will become more complicated. When
H0 = 1, there are two states |1〉F and |2〉F for three settings to
choose. Now the bound is written as

h3
1 = max

α, `, {|l〉F}2l=1

1
3

3∑
j=1

δa,α( j)

−r1|a| +
2∑

l=1

δl,`( j)a〈l|FB̂ j|l〉F

 ,
(A4)

where both ` and α are no longer fixed. Then the optimal
deterministic bounds related to the second term in the above
equation is

g3
1 = max

α, `

1
3

2∑
l=1

λmax

 3∑
j=1

δl,`( j)α( j)B̂ j


 , (A5)

The value of g3
1 depends on both Alice’s result α( j) and the

strategy of Fenella `( j).
First, let us consider an idealized scenario where Alice

always declares non-null results, i.e., α( j) = ±1. Simi-
larly, we also need to search all possible forms for `( j) to
find the optimized r1 by minimizing Eq. (A3). Suppose that
`(1) = 1, `(2) = `(3) = 2, i.e., for j = 1, 2, 3 measurements,
the states prepared by Fenella are |1〉F, |2〉F, |2〉F, respectively,
then we have

g3
1 = max

α

{
1
3

[
λmax

(
α(1)B̂1

)
+ λmax

(
α(2)B̂2 + α(3)B̂3

)]}
.

(A6)
By substituting α( j) = +1 for all j into this case, the optimal
r1 = 0 and the maximum value of h3

1 reaches (1 +
√

2)/3.
There are likely other combinations with different choices of
`( j) and α( j) that can reach the same bound in Eq. (8).

Then, taking loss into account, m in Eq. (A3) will change
related to the function of α( j). We can still search all possible
cases numerically to find the bound. Here we give one solu-
tion for the 2/3 ≤ ηA < 1 case. By keeping `(1) = 1, `(2) =

`(3) = 2 and substituting α(1) = 0, α(2) = α(3) = +1, we can
get the optimal expressions in Eq. (9).

Appendix B: Operation of Pockels cell

We can obtain the largest violation of the steering inequal-
ity if Alice and Bob each choose three measurement settings
that correspond to projective measurements in three mutually
unbiased bases. Closing the locality loophole requires switch-
ing between these settings quickly. This appendix describes
how we use a combination of waveplates, a single Pockels
cell (PC), and a polarizing beam displacer (BD) to accomplish
this.

First we define the target measurement operators we aim
to measure in the experiment (at both Alice and Bob) as σ̂z,
σ̂x, and σ̂y for settings 1, 2, and 3, respectively. Here, σ̂z, σ̂x,
and σ̂y are the Pauli matrices, which are defined in the z-basis,
{|0〉, |1〉}, as:

σ̂z = |0〉〈0| − |1〉〈1|, (B1)
σ̂x = |+〉〈+| − |−〉〈−|, (B2)
σ̂y = |+i〉〈+i| − |−i〉〈−i|, (B3)

where we use the convention |±〉 = 1
√

2
(|0〉 ± |1〉) and |±i〉 =

1
√

2
(|0〉 ± i|1〉). Using the Bloch representation, we display the

‘+’ eigenstates of the three measurement settings in Fig. B1.
The states in our experiment are encoded in polarization,

and thus we must map the Pauli operators to measurements
on the polarization degree of freedom. We map the z-basis
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Figure B1. Bloch sphere representation of target measurements in
our experiment. The blue, green, and red Bloch vectors represent the
‘+’ eigenstates of the target measurements for settings 1, 2, and 3
respectively. The figure also denotes how we map the Bloch sphere
to polarization states. As a result of our choice of coordinate sys-
tem, vertically polarized light |V〉 is represented by the Bloch vec-
tor (0, 0, 1), diagonally polarized light has Bloch vector (1, 0, 0), and
left-circularly polarized light has Bloch vector (0, 1, 0).

to horizontal (|H〉) and vertical (|V〉) polarization with the as-
signments |0〉 → |V〉 and |1〉 → |H〉. As a result, the x-basis
is mapped to the diagonal and anti-diagonal polarization ba-
sis via |+〉 → |D〉 and |−〉 → |A〉, and the y-basis is mapped
to the left- and right-circular polarizations via |+i〉 → |L〉 and
|−i〉 → |R〉.

To realize the target measurements, we need a scheme for
which the overall effect of Bob’s measurement is that, for set-
ting j = 1, polarization state |V〉 remains |V〉, for j = 2, |D〉
is rotated to |V〉, and for j = 3, |L〉 becomes |V〉. It is eas-
iest to describe our scheme if we consider how a vertically
polarized beam is affected as it travels backwards through the
optics in Bob’s measurement setup, beginning from the ‘+’
detector. For the j-th measurement setting, vertically polar-
ized light will be transformed to some other polarization state
as it propagates backwards, and the polarization state that the
beam ends up in is the ‘+’ eigenstate of this j-th measurement.

We represent the polarization of the light beam at various
stages of backwards-propagation in Fig. B2. Initially, the
light transmitted by the beam displacer is vertically polarized
(Fig. B2(a)). Next the beam propagates backwards through
two waveplates, and it is rotated to an elliptical polarization
state (Fig. B2(c)). Then the beam encounters the PC. Ideally,
when no voltage is applied to the PC, it has no birefringence
and thus has no effect on polarization. The PC becomes bire-
fringent when a voltage is applied, and it is aligned such that
it induces a relative phase θ between the |D〉 and |A〉 polar-
ization states. In our setup, setting j = 1 corresponds to no
voltage applied to the PC, j = 2 corresponds to a positive volt-
age which applies a phase of +θ, and j = 3 corresponds to a
negative voltage that applies a phase −θ. We choose θ = 120◦,
which ensures the three different polarization states exiting the
PC are eigenstates of three different mutually unbiased mea-
surement operators. Finally, the light backwards-propagates

through the final QWP and HWP and we can see that the three
resulting Bloch vectors (Fig. B2(f)) are equal to the Bloch vec-
tors of the ‘+’ eigenstates of the three target measurement op-
erators (Fig. B2).

The above scheme works for an idealized PC. In reality, the
PC’s we used in Alice and Bob’s measurement stations ex-
hibited a small amount of birefringence even when no voltage
was applied to them. To correct for this, we performed quan-
tum process tomography to characterize the Jones matrix of
each PC when no voltage was applied. Instead of using the
idealized waveplate angles given in the caption of Fig. B2, we
used a numerical optimization to find the optimal angles for
each measurement station.

Appendix C: Quantum characterization of Bob’s measurements

In order to perform the steering test, we need an accurate
quantum description of the measurements performed in Bob’s
laboratory for each of the three settings, and we detail how we
find this description in this appendix. We begin by defining
the family of quantum models we use to represent Bob’s mea-
surement apparatus in subsection C.1 of this appendix. We
perform two types of measurements in order to learn a model
that accurately represents Bob’s apparatus. First, we charac-
terize the polarization-rotation optics in Bob’s measurement
setup by performing a bootstrapped version of standard quan-
tum measurement tomography with parametric resampling.
We explain our tomography procedure in subsection C.2, and
we explain how we modify the steering inequalities to deal
with imperfections in Bob’s measurement settings in subsec-
tion C.3. Second, we measure the path efficiencies for each of
Bob’s detection outcomes (and track these efficiencies in real
time) using a modified version of Klyshko’s efficiency mea-
surement, which we detail in subsection C.4.

C.1. Quantum model of Bob’s measurement apparatus

A simplified diagram of our experiment is given in
Fig. C1(a). Bob’s measurement setup consists of two wave-
plates, followed by a PC, followed by two more waveplates,
and a polarizing beam displacer (BD) with a detector in each
output port. We model the combined effect of the waveplates
and PC as a polarization rotation that depends on Bob’s choice
of measurement setting, j. The BD splits the beam into two
paths; vertically polarized light is directly transmitted into the
‘+’ path, and horizontally polarized light is deflected into the
‘-’ path. Bob records a ‘+’ outcome if the detector in the ‘+’
path clicks, a ‘-’ outcome if the other detector clicks, and a
null outcome if neither detector clicks. To account for non-
unit detection efficiency we model the detectors as ideal de-
tectors preceded by non-polarizing beamsplitters; the trans-
mission probability of the beamsplitter in the ‘±’ path is given
by β(±)

j .
In our model of Bob’s measurements, we will make two

main assumptions. First, we assume that in Bob’s measure-
ment apparatus there is no polarization-dependent loss before
the BD; this allows us to model all the loss in the experiment
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Figure B2. Visualization of polarization rotation light experiences as it propagates backwards through Bob’s measurement setup. In each
subfigure we plot the beam’s polarization state on the Bloch sphere, after it has propagated backwards through part of Bob’s setup. (a) After
propagating through the beam displacer, the beam is vertically polarized, as represented by the blue Bloch vector. Next the polarization state is
rotated by (b) a HWP with fast-axis −24.94◦ from horizontal and (c) a QWP at an angle of −27.38◦. The grey vector in the linear-polarization
plane of the Bloch sphere indicates the angle of the waveplate; the action of a half (quarter) waveplate is to rotate the Bloch vector by an angle
of 180◦ (90◦) about this grey vector. Since we are considering backwards propagation, the angle of rotation is determined by the left-hand rule
(the Bloch vector rotates in the direction of the curl of the fingers of the left hand when the left thumb points in a direction parallel to the grey
vector). (d) When the beam travels through the PC, one of three rotations are applied to the beam, depending on the measurement setting. We
either apply no rotation to the Bloch vector ( j = 0, blue Bloch vector), apply a rotation of +θ ( j = 1, green Bloch vector), or apply a −θ rotation
( j = 2, red vector). Each of the three resulting Bloch vectors is orthogonal to the other two, indicating that they each correspond to the ‘+’
eigenstate of one of a set of three mutually unbiased bases. Finally the beam travels through (e) a QWP at 62.62◦ and (f) a HWP at −24.94◦.
The overall effect of backwards propagation through Bob’s measurement is that, if j = 0, the polarization state |V〉 remains |V〉, if j = 1, |V〉 is
rotated to |D〉, and when j = 2, |V〉 becomes |L〉.



14

Figure C1. Simplified diagrams of the experimental setups used for
(a) testing the steering inequality and (b) performing tomography on
Bob’s measurement apparatus. (a) A source emits a pair of photons;
one travels to Alice and one to Bob. At each measurement station,
photons propagate through polarization-rotating optics, including a
PC with an applied voltage that depends on the measurement set-
tings. In this simplified model, we assume there is no polarization-
dependent loss before the light encounters a polarizing beam dis-
placer (BD). We model loss in the experiment by first modeling all
optics and detectors with perfect efficiency, and introducing non-
polarizing beamsplitters with setting-dependent transmission prob-
abilities α(+)

k , α(−)
k , β(+)

j , and β(−)
j . (b) We add a polarizer and two

waveplates at Bob’s station to perform the measurements required
for quantum measurement tomography.

as occurring after the BD. When characterizing Bob’s mea-
surement apparatus, we find no significant evidence of po-
larization dependent loss in the waveplates and Pockels cell.
Second, we assume that Bob’s measurements are lossy ver-
sions of projective measurements. We measure an excellent
extinction ratio greater than 105:1 with the beam displacer,
providing evidence in favour of this assumption. We note that
this second assumption is conservative, because if it were the
case that Alice and Bob do not share an entangled state, then
the bound of the steering inequality can only be achieved if
E(±)

j are projectors.
In quantum theory, the positive-operator valued measure

(POVM) representating Bob’s three-outcome measurement
for setting j, is:

MB
j =

{
β(+)

j Ê(+)
j , β(−)

j Ê(−)
j , Ê(null)

j

}
. (C1)

The measurement effects satisfy β(+)
j Ê(+)

j +β(−)
j Ê(−)

j +Ê(null)
j = I,

where I is the 2 × 2 identity matrix. For a measurement of a
single photon with polarization state ρ, the probability that
detector ± clicks is P(±|ρ, j) = β(±)

j Tr
(
ρÊ(±)

j

)
, and the proba-

bility that neither detector clicks is P(null|ρ, j) = Tr
(
ρÊ(null)

j

)
.

We represent the measurement effect operators Ê(±)
j as:

E(±)
j =

1
2

(
e(±)

j,0 I + e
(±)
j · σ

)
, (C2)

where σ = (σ̂x, σ̂y, σ̂z) is a vector of Pauli matrices, and
e(±)

j =
(
e(±)

j,1 , e
(±)
j,2 , e

(±)
j,3

)
is the Bloch vector consisting of three

real numbers that specify the basis of the measurement. Be-
cause of our assumption that Bob’s measurements are lossy

projective measurements, we set e j,0 = 1, and the Bloch vec-
tors e(±)

j must satisfy
∣∣∣∣e(±)

j

∣∣∣∣ = 1. Finally, since in our model we
assume there is no polarization-dependent loss before the BD,
the measurement effects must satisfy Ê(+)

j + Ê(−)
j = I, imply-

ing e(+)
j = −e(−)

j . Thus, in order to fully specify measurement

MB
j it is sufficient to know the Bloch vector e(+)

j , and the two

efficiencies β(+)
j and β(−)

j .

C.2. Bootstrapped measurement tomography with parametric
resampling

We slightly modify our setup to perform tomography on
Bob’s measurement device (see Fig. C1(b)). We tune the
source to produce the separable state |VH〉, so that a verti-
cally polarized photon is sent to Alice’s measurement station,
and a horizontally polarized one to Bob’s. We place a hori-
zontal polarizer in Bob’s measurement bridge, followed by a
half and a quarter waveplate which we can rotate to prepare
one of the six polarization states |H〉, |V〉, |D〉, |A〉, |R〉, or |L〉.
We turn Alice’s PC off and rotate her waveplates to maximize
the rate of detections in her ‘+’ detector. We set Bob’s PC
to randomly switch between his three measurement settings,
and acquire data for one minute. The PC runs at a rate of 100
kHz, such that Bob performs roughly 3.3 × 104 measurement
trials per second, per measurement setting. We acquire data
over a total of 120 one-minute intervals, and each minute we
set the input state to one of the above six polarization states.
For each minute of data we record the input polarization state,
the number of coincident detections recorded between Alice’s
and Bob’s ‘+’ detectors while Bob’s PC was set to each of the
three measurement settings, as well as the number of trials the
PC was set to each setting. For each setting, the final dataset
is a list of 120 measured pairs of input states and coincidence
count rates.

We analyze the data for each setting independently, using a
bootstrap method with parametric resampling. For each mea-
surement setting j we perform 10,000 analysis trials. Each
analysis trial begins by sampling, with replacement, 120 pairs
of input states and coincidence rates; this is the bootstrapping.
Next, to account for statistical errors in the count rates we
measure, as well as systematic errors caused by imperfections
in the waveplates used to prepare the input states, we per-
form a parametric resampling step. We resample each mea-
sured count rate from a Poisson distribution with mean equal
to the raw count rate that we measured. Based on the man-
ufacturer’s specified tolerance, we assume that the phase of
each state-preparation waveplate is accurate to within ±0.005
wavelengths, and we choose an error value for each wave-
plate from a uniform distribution within this range. We also
assume that we can find the zero angle for each waveplate
to within an accuracy of 0.1 degrees, and we choose an er-
ror value from a normal distribution with standard deviation
0.1 for each waveplate. Then we recalculate the six input
states based on the randomly assigned waveplate imperfec-
tions. After both the bootstrapping and parametric resampling
steps we are left with a new list of data consisting of 120 (im-
perfect) input states and resampled coincidence count rates.
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Finally, using this new list of data we find ẽ(+)
j , the maximum-

likelihood estimate of e(+)
j . Because we are making the con-

servative assumption that the E(±)
j are projectors, we enforce

the constraint
∣∣∣∣ẽ(+)

j

∣∣∣∣ = 1.
After performing all analysis trials, we are left with a list

of 10,000 normalized maximum likelihood estimates of e(+)
j .

The mean of this list, 〈ẽ(+)
j 〉, is our final estimate of e(+)

j . When
the 10,000 max-likelihood estimates are plotted, their end-
points lie on the surface of the Bloch sphere, and they are dis-
tributed around 〈ẽ(+)

j 〉 in the shape of a 2-D Gaussian ellipse.
We calculate σ j, the standard deviation of angular displace-
ments from the mean vector in the direction along the semi-
major axis of this ellipse. The results of the measurement to-
mography analysis are summarized in Table I in the main text.
When testing the steering inequality, we assume that the angle
between the true Bloch vector describing Bob’s measurement,
e(+)

j , and our best-guess vector 〈ẽ(+)
j 〉 is no larger than 5σ j.

C.3. Dealing with imperfections in Bob’s measurements

In order for Bob to make the most conservative character-
ization of his measurements, we make Bob’s measurement
Bloch vectors as close as possible after the rotations by cor-
responding angles with 5σ uncertainties. The idea is that if
Bob’s settings were all closer together (i.e. closer to a “com-
mon” direction than he thought they were), then Alice could
convince him that she was steering him even if she wasn’t. At
the extreme, if Bob’s Pockels cell stopped working so that he
was always measuring the same direction, then Alice could, in
each run, simply dial up which result (+1 or −1) she wanted
Bob to get by having Fenella send a photon aligned or anti-
aligned with this direction. She could get any correlation she
desired with no entanglement at all. This is why we consider
the worst case for Bob’s directions, when they are all closer to
a common direction.

For the no message case, Alice/Fenella’s best strategy is
to prepare a state aligned/anti-aligned with the mean (nor-
malized) direction ~m of Bob’s three measurement settings,
then send it to Bob. We can flip the measurement direc-
tions ~B j (e.g., from ~B1 to its opposite −~B1) and the results
(from +1 to −1) without changing anything physically. De-
pending on the sign of each ~B j we choose, there are 8 differ-
ent combinations and their respective normalized mean vec-
tors. We need to find, out of these 8 groups, the one that
will have the largest inner product between their own means
and each of the ~B j that go into it–that is {−~B1, ~B2, ~B3}. Hav-
ing identified this, we can rotate each {−~B1, ~B2, ~B3} towards
~m = (−~B1 + ~B2 + ~B3)/| − ~B1 + ~B2 + ~B3| by their respective
uncertainties (5σ j) through the Rodrigues formula.

When an H0 = 1 bit message is transferred, Alice has d = 2
level of information that can encode something about the mea-
surement setting Bob will choose. For instance, we assume
that Alice’s first level of information indicates that Bob will
measure along ~B3, and the second level message means that
Bob will measure either ~B1 or ~B2 (each with 50% probabil-
ity). In this situation, Alice’s optimal cheating strategy would

Table CI. Conservative estimate of Bob’s measurements after rota-
tions by 5σ uncertainties.

Setting 1 Setting 2 Setting 3

H0 = 0
X 0.0913 0.9942 0.1424

Y −0.0024 0.0943 0.9875

Z −0.9958 −0.0508 −0.0671

H0 = 1
X 0.9936 0.1584

Y 0.1127 0.9869

Z −0.0104 −0.0278

be to ask Fenella to prepare the state |1〉F aligned with ~B3 if
her message is on the first level, and to prepare the state |2〉F
along ~m = (~B1 + ~B2)/|~B1 + ~B2| if her message is on the sec-
ond level. Now, to avoid Alice’s optimal cheating strategy,
Bob should find the closest two of the three settings among 12
different combinations of {±~Bu,±~Bv} (u, v ∈ {1, 2, 3}). After
checking their respective inner products, we find ~B2 and ~B3
are closest to each other, then rotate them towards their mean
vector (~B2 + ~B3)/|~B2 + ~B3| (each by 5σ j). Note that in this case
it doesn’t matter how much Bob rotates his ~B1 by, because
Alice/Fenella can always prepare a state that perfectly aligns
with ~B1. The results of Bob’s measurement settings after rota-
tion are summarized in Table CI. The optimal parameter r and
bounds hH0

n are obtained based on these rotated settings.

C.4. Measurement of Bob’s detection efficiencies

David Klyshko invented a widely used method to estimate
overall detection efficiency in experiments with two correlated
photons that each travel to one detector [45]. In our experi-
ment each photon can travel to one of two detectors, and we
modify Klyshko’s method to allow us to estimate the overall
detection for efficiency for each of the four detectors in this
type of setup.

C.4.a. Modified Klyshko equations

To explain our method, we refer again to the simplified
model of our experiment in Fig. C1(a). Our goal is to charac-
terize the efficiencies β(+)

j and β(−)
j . We do this by first deriving

equations for the count rates Alice and Bob expect to observe.
For now, we will assume that any loss in the setup affects both
polarizations of light equally. We will revisit this assump-
tion later. Each photon pair emitted by the source may take
one of four paths towards the detectors at Alice’s and Bob’s
measurement stations; Alice’s and Bob’s photons might each
travel towards a ‘+’ detector, Alice’s can travel to her ‘+’ de-
tector and Bob’s to his ‘-’ detector, Alice’s could travel to her
‘-’ detector and Bob’s to his ‘+’ detector, or finally both pho-
tons can travel towards the ‘-’ detectors. Each of these four
paths has an associated joint probability represented by pa,b

k. j ,
with a, b ∈ {+,−}, representing Alice’s and Bob’s outcomes,
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and k, j ∈ {1, 2, 3} representing their settings.9

Using these joint probabilities, we can write down the ex-
pected detection rates if Alice and Bob measure light from a
source that produces N pairs each second. We assume that
the source emits at most one pair per coincidence window,
and we also assume that the detectors have negligibly small
rates of background counts. We will also revisit these two as-
sumptions later. With this, the expected rates of coincident
detections C(a,b)

k, j between detector a at Alice and detector b at
Bob are:

C(a,b)
k, j = Nα(a)

k β(b)
j p(a,b)

k, j . (C3)

The expected rates of single detections at detector a at Alice,
A(a)

k , are:

A(a)
k = Nα(a)

k

(
p(a,+)

k, j + p(a,−)
k, j

)
. (C4)

Finally, the expected rates of single detections at detector b at
Bob, B(b)

j , are:

B(b)
j = Nβ(b)

j

(
p(+,b)

k, j + p(−,b)
k, j

)
. (C5)

Rearranging Eqs. (C3)-(C5) we find that Alice’s efficiency
α(a)

k is given by:

α(a)
k =

C(a,ā)
k, j C(ā,a)

k, j −C(a,a)
k, j C(ā,ā)

k, j

C(ā,a)
k, j B(ā)

j −C(ā,ā)
k, j B(a)

j

, (C6)

and Bob’s efficiency β(b)
j by:

β(b)
j =

C(b,b̄)
k, j C(b̄,b)

k, j −C(b,b)
k, j C(b̄,b̄)

k, j

C(b,b̄)
k, j A(b̄)

k −C(b̄,b̄)
k, j A(b)

k

, (C7)

where the overbars on the a’s and b’s in the superscripts in the
above two equations denote “the opposite outcome” (e.g. if
b = ‘−’, then b̄ = ‘+’). Equations C6 and C7 provide a method
for computing the efficiency of each of Alice’s and Bob’s de-
tection outcomes from the pair source to each detector, using
only the measured singles and coincidence rates in the exper-
iment. Importantly, the probabilities p(a,b)

k, j all factor out, and
thus we can characterize the efficiencies of all four detectors
without having details of the setup such as the quantum state

9 Another way to understand the meaning of the joint probabilities pa,b
k. j

is by considering the case of an experiment with no loss (i.e. consider
α(±)

k = β(±)
j = 1); in this case, p(a,b)

k, j is the probability that, in an experiment
in which Alice and Bob measure a single pair of photons with settings k
and j, respectively, Alice obtains outcome a and Bob obtains outcome b.
In a real experiment with non-zero loss, the probability of Alice and Bob
obtaining the joint outcome (a, b) is actually α(a)

k β(b)
j p(a,b)

k, j . In principle the

probabilities p(a,b)
k, j could be computed given a complete quantum descrip-

tion of Alice and Bob’s measurement apparatuses as well as the state shared
between them. However while the p(a,b)

k, j ’s are a useful concept for deriving
the modified Klyshko equations, they do not need to be known in order to
find the efficiencies α(a)

k and β(b)
j .

of the photon pairs or the measurement operators describing
Alice’s and Bob’s measurement stations.

While the accuracy of Eqs. (C6)-(C7), does not depend on
the state of the photon pair or on the specific measurements
performed, the precision does—this is due to the subtraction
of two terms in the numerators and denominators. Specifi-
cally, these equations are most precise when Alice’s and Bob’s
measurement outcomes are strongly correlated (or anticorre-
lated) and least precise when their outcomes are uncorrelated.
For example, if the source emits the maximally entangled sin-
glet state and Alice and Bob perform measurements in the
same basis, then the positive term in each of the numerators
and denominators will be much larger than the negative one,
and Eqs. (C6)-(C7) will be a ratio of two large numbers with
error bars determined by Poissonian counting statistics. On
the other hand, if Alice and Bob measure the singlet state in
two mutually unbiased bases, then both terms in the numera-
tors and denominators will be of similar orders of magnitude,
and the numerators and denominators will both approach 0,
leading to a larger overall uncertainty in the final estimate of
the efficiencies.

In order to test Eq. (14) it suffices to know the ratio of effi-
ciencies of Bob’s two detectors. To get this ratio, we divide the
b = ‘+’ form of Eq. (C7) by its b = ‘−’ form. The detector out-
comes between Alice and Bob are maximally anticorrelated—
and the modified Klysho equations are most precise—when
Alice measures in the same setting as Bob (k = j). Thus, to
find the ratio of the detection efficiencies for each of Bob’s
outcomes, we use the formula:

βratio
j =

β(+)
j

β(−)
j

=
C(−,+)

j, j A(+)
j −C(+,+)

j, j A(−)
j

C(+,−)
j, j A(−)

j −C(−,−)
j, j A(+)

j

. (C8)

We will now revisit the assumption that any lossy compo-
nents of our experimental setup affect both polarizations of
light equally. When characterizing our experiment, we do not
find any evidence of polarization-dependent loss through any
of the individual optics in our experiment. However, there
is still some polarization-dependent loss at the source. Each
photon produced in the source is split into two paths (the
|H〉 component of the photon travels down one path, and the
|V〉 component down another other), and the efficiency with
which these two paths are coupled into the single-mode fibers
leading to Alice’s and Bob’s measurements stations are not
equal. To account for this, we simulate the count rates we
would expect to measure in the presence of some polarization-
dependent loss, and see what size of systematic error these
simulated rates introduce into the equation for βratio

j . We find
that if one polarization experiences x% more loss than the or-
thogonal polarization, then this can introduce an error of at
most about ±x% in Eq. C8. The exact amount of system-
atic error introduced depends on the bases that Alice and Bob
measure in. If we can bound the polarization-dependent loss
in the setup to be below a specific level, we can also bound
the systematic error in our estimate of βratio

j to that same level.



17

0 20 40 60 80

1.14

1.16

1.18

1.20

1.22

1.24

Measurement minute

E
ffi
ci
en
cy
ra
tio
,β

jra
tio

Figure C2. Ratio of system detection efficiency between Bob’s +1
and −1 measurement outcomes throughout the running time of the
experiment, for measurement settings j=1 (blue), j=2 (green), and
j=3 (orange-red). Each point is calculated from five minutes of data,
and error bars represent a 1-sigma statistical uncertainty estimated
from the Allan deviation of the data.

Table CII. Measurement and 5-sigma conservative estimate of βratio
j

for each measurement setting.

Setting Measured value
closest to 1

Conservative
estimate

1 1.1657 ± 0.0054 1.115
2 1.1435 ± 0.0054 1.094
3 1.1666 ± 0.0054 1.116

C.4.b. Efficiency measurements

During our experiment, each time a voltage is applied to the
PC it is applied for approximately 150 ns, which is enough
time for 12 laser pulses to pass through the PC. We record
data for all of these pulses, but only use the data from one
pulse to test our steering inequality. We call this pulse the
inequality pulse. We average the data from the other 11 pulses
(which we call calibration pulses) and use these averaged data
to estimate the efficiency of Bob’s measurements. Using the
calibration pulses allows us to keep track of βratio

j in real time

while testing the steering inequality. We use Eq. (C8) to find
βratio

j for each of Bob’s three measurement settings.
Calibration pulses were collected in 85 separate one-minute

intervals10. Calculating the Allan deviation [65] of the data
implies that the smallest uncertainty on βratio

j is obtained if the
data is averaged over intervals of approximately five minutes.
The total dataset can be divided into 17 five-minute windows.
To visualize how βratio

j varies over the running time of the ex-
periment, we calculate it for each of the five-minute windows,
and plot this is in Fig. C2. We notice a clear difference in βratio

j
between setting 2 and settings 1 and 3. We also notice a sig-
nificant drift in βratio

j throughout the experiment. The βratio
j ’s

we measure are all greater than one. For the specific H0 = 0
and H0 = 1 inequalities we test, it becomes easier to violate
the inequality as βratio

j increases. Thus, the conservative choice
is to underestimate the value of each βratio

j . We are confident
that the amount of polarization-dependent loss in the source
is no larger than 2%. For each setting we conservatively esti-
mate βratio

j as the lowest measured value from among the five-
minute windows, minus the maximum 2% systematic error we
expect from polarization-dependent loss, minus five times the
estimated standard error on that measurement. The conserva-
tive estimates of βratio

j we use to test the steering inequality are
listed in Table CII.

C.4.c. Systematic uncertainties

There are two other types of systematic error that
Eq. (C8) does not take into account, namely background
counts from the detectors and multi-pair emissions from the
source. We measure a background rate of approximately
200 counts/second, and the probability that any single laser
pulse creates a photon pair is about 0.0072, which means that
the probability of creating two pairs is 0.00722 ≈ 5 × 10−5.
We simulate more realistic detection rates that take the back-
ground counts and multi-pair emission probability into ac-
count, and after evaluating Eq. (C8) with these simulated rates
we see that these systematic errors lead to an underestimation
of βratio

j by approximately 0.0006. Because these two sources
of error combine to introduce a systematic uncertainty that is
roughly 10% the magnitude of the statistical uncertainty on
our measurement of βratio

j , and also because they lead to an
even more conservative estimate of βratio

j , we can safely ne-
glect them.
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