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Recently, a novel framework for semi-device-independent quantum prepare-and-measure protocols has been
proposed, based on the assumption of a limited distinguishability between the prepared quantum states. Here,
we discuss the problem of characterizing an unknown quantum measurement device in this setting. We present
several methods to attack the problem. Considering the simplest scenario of two preparations with lower bounded
overlap, we show that genuine three-outcome positive-operator valued measures (POVMs) can be certified,
even in the presence of noise. Moreover, we show that the optimal POVM for performing unambiguous state
discrimination can be self-tested.
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I. INTRODUCTION

The problem of certifying and characterizing quantum
systems is a central problem of quantum information science,
in particular towards the development of future quantum
technologies. It is desirable to develop certification methods
that are highly robust to noise and technical imperfections.

The device-independent (DI) approach [1–4] is of strong
interest in this context (see, e.g., Refs. [5,6] for recent re-
views). The main feature here is that a quantum system (or
device) can be certified with minimal assumptions, without
the requirement of using previously calibrated devices. In the
fully DI approach, the observation of certain measurement
statistics can certify a general property of a quantum system
(for instance, that a source produces a quantum state that
is entangled) and even completely characterize the system,
i.e., identify precisely which entangled state is produced. The
latter is referred to as “self-testing” (see, e.g., Refs. [7–11]).

While the fully DI approach is conceptually very elegant
and provides the strongest possible form of certification for a
quantum system, it is challenging to implement in practice.
The main difficulty is that fully DI certification methods
require a loophole-free Bell inequality violation. This mo-
tivated the development of partially DI methods that can
be implemented in simple prepare-and-measure type experi-
ments, which do not involve entanglement. The price to pay
for this simplification is that an additional assumption on
the system is required. First works in this direction used an
assumption on the Hilbert space dimension of the quantum
states being prepared [12–15]. Self-testing methods have been
developed for this setting [16], for characterizing quantum
states and measurements [17–22], and for implementing quan-
tum information protocols [23–27]. In practice, however, the
assumption of bounded dimension is not straightforward to
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justify, as dimension is not a directly measurable quantity.
One typically needs to assume that the experimental setup is
free of extra side-channels. As this is delicate in practice, one
would ideally find other solutions allowing one to discard this
assumption.

This motivates the study of different approaches to the
semi-DI setting, using different types of assumptions. Three
promising approaches have been recently put forward. First,
Chaves et al. [28] suggested to upper bound the entropy
of the quantum message (i.e., the set of prepared quantum
states). Then, Himbeeck et al. [29] proposed an upper bound
on the energy of quantum states. Finally, Brask et al. [30]
assumed a lower bound on the overlap between the prepared
quantum states. Moreover, Wang et al. [31] has developed a
toolbox to characterize the quantum correlation in the prepare-
and-measure scenario under the assumption of overlaps of
the quantum states. Clearly, the common feature of all these
approaches is placing a bound on how distinguishable the
quantum states are from each other. In practice these ap-
proaches open new perspectives. Indeed, the energy of an
optical source can in principle be directly measured, which
provides a good justification for an upper bound on the energy
or a lower bound on the overlap (using, say, the vacuum and
weak coherent states). This approach recently led to promising
randomness generation protocols [30,32], combining semi-DI
security, high rates, and ease of implementation.

Here we explore further the potential of this new ap-
proach to the semi-DI setting. In particular, we consider the
problem of characterizing an unknown quantum measure-
ment device in a simple prepare-and-measure scenario, which
features only two possible preparations and a fixed ternary
measurement. We use the assumption of a lower bound on
the indistinguishability between the two prepared quantum
states, which we formalize for mixed states in terms of
lower bounds on the fidelity. This allows us to certify certain
properties of the positive-operator valued measure (POVM)
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x ∈ {0, 1}

b ∈ {0, 1, 2}

|ψx

FIG. 1. Schematic representation of the scenario considered.

that is implemented inside the measurement device. In partic-
ular, we show that the observation of certain correlations certi-
fies that the measurement is a genuine three-outcome POVM.
In order to do so, we develop methods to characterize the set
of correlations achievable with binary POVMs and classical
postprocessing. Moreover, we show that a particular genuine
three-outcome POVM, which allows for unambiguous state
discrimination [33–35], can be self-tested. Finally, we discuss
the robustness to noise of these methods.

II. DEFINING THE PROBLEM

We consider the prepare-and-measure setup sketched in
Fig. 1. The preparation device takes a binary input, x ∈ {0, 1},
and the measurement box performs a fixed measurement
(hence no input) resulting in a ternary output, b ∈ {0, 1, 2}.
Upon receiving x, the preparation device sends a quantum
system in an unknown state, ρx, to the measurement device,
which performs an unknown POVM on the system. The
POVM elements associated with each outcome are noted Mb.
This results in the following statistics:

p(b|x) = Tr[ρxMb], (1)

the set of which, p := {p(b|x)}, is called a behavior.
Our goal is to characterize the unknown POVM that is

implemented inside the measurement device. This charac-
terization is semi-DI, in the sense that it is based only on
the observed behavior, under two assumptions. First, the
choice of the input x is independent from the boxes. All the
information that the measurement device receives about x
comes from the received quantum state ρx. Hence, in order
to make nontrivial statements, we need to limit the amount of
information about x that can be retrieved from the states ρx.
This leads to our second assumption, namely, a lower bound
on the indistinguishability of the two quantum states. Here we
use the fidelity [36–38] as a measure of indistinguishability
between ρ0 and ρ1. Our assumption reads

F (ρ0, ρ1) = Tr
√

ρ
1/2
0 ρ1ρ

1/2
0 ! δ. (2)

For the case of two pure states, we have simply that
F = |〈ψ0|ψ1〉| ! δ. Note also that when the two states
are identical, then F (ρ0, ρ1) = 1. In the following, without
loss of generality, we restrict our analysis to the case
of two pure states. This is because the set of behaviors
that is achievable under the above assumption (2) can
always be reproduced by using two pure states with the
same overlap. To see this, suppose a behavior is produced
by two mixed states with F (ρ0, ρ1) = δ. According to

Uhlmann’s theorem, there exists a pair of purifications of
ρ0 and ρ1, denoted by |φ0〉 and |φ1〉, respectively, such
that their overlap satisfies |〈φ0|φ1〉| = δ. Then p(b|x) =
Tr(ρxMb) = Tr(TrR(|φx〉〈φx|)Mb) = Tr(|φx〉〈φx|Mb ⊗ IR),
where ρx = TrR(|φx〉〈φx|) and R is the ancillary system.

Let us discuss the parametrization of the two pure quantum
states. Without loss of generality, we can represent these
states in an effective qubit space spanned by the states |0〉
and |1〉. Note that we make no assumption on the Hilbert
space dimension, but simply use the fact that we can set the
reference frame at our convenience. Specifically, we write

|ψ0〉 = cos θ |0〉 + sin θ |1〉,
|ψ1〉 = cos θ |0〉 − sin θ |1〉, (3)

with δ = cos 2θ and 0 " θ " π/4, so that the overlap 〈ψ0|ψ1〉
is positive and real. Note that since all the behaviors achiev-
able via pairs of quantum states with a larger overlap are in-
cluded in the behaviors with a smaller overlap (see Appendix
2 of Ref. [30]), we can take the overlap of the two states to be
δ when characterizing the boundary of the sets of behaviors
for an overlap larger than or equal to δ.

With the overlap assumption, the first property of the
measurement box to be certified is that it performs a gen-
uine three-outcome POVM, i.e., a measurement that cannot
be decomposed into a convex combination of two-outcome
POVMs. Mathematically, if for all b, we can write

Mb =
∑

j

p jM
j
b , (4)

where each {M j
b}b=0,1,2 is a valid POVM with M j

j = 0, and
{pj} j=0,1,2 is a valid probability distribution, then we say
that {Mb} is not a genuine three-outcome POVM. Physically
speaking, this means such an {Mb} could be effectively carried
out by applying only two-outcome POVMs and classical
postprocessing.

Let P3(δ) denote the set of behaviors achievable by three-
outcome POVMs for a fixed overlap δ (or larger), and let
P2(δ) denote the one achievable by a convex combination of
two-outcome POVMs. We should have P2(δ) ! P3(δ) for any
δ > 0, since we know that two-outcome POVMs are special
cases of three-outcome POVMs. Moreover it has been shown
that, in the regime δ close to 1, behaviors in P3(δ) can certify
more randomness than P2(δ) [39]. For completeness, we also
introduce another set of behaviors, called the trivial set Pt .
Here the input state is ignored (so δ is omitted) and the output
is generated at random according to some distribution. Such
implementations are called trivial POVMs in the following.
Note that this set is different from the set of classical behaviors
in Ref. [29]. Mathematically, p ∈ Pt implies p(b|0) = p(b|1)
for all b. One should note that P3(δ), P2(δ), and Pt are convex,
upon which our arguments are based.

Finally, note that the problem of certifying genuine four-
outcome POVMs is not discussed here. While there exist
extremal qubit POVM featuring four outcomes, these can
never be distinguished from three-outcome POVMs in the
present scenario. This is because we can restrict our analysis
to POVMs for which all the elements are in a plane of the
Bloch sphere [spanned by the two states (3)]. In this case,
extremal POVMs feature only three outcomes [39], hence
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any behavior can be reproduced via three-outcome POVMs
and classical postprocessing. The certification of a genuine
four-outcome POVM would require a scenario with three
preparations with limited distinguishability, a problem which
we leave for future research.

III. RESULTS

In this section, we present different methods for charac-
terizing the sets of behaviors P3(δ), P2(δ), and Pt . First, we
show that the problem of determining whether a certain be-
havior belongs to P2(δ) can be cast as a semidefinite program
(SDP). Then we determine the boundary of the various sets
for a specific class of behaviors. Finally, we show that various
properties of the POVM for performing unambiguous state
discrimination (USD) can be certified, in particular that the
POVM can be self-tested.

A. Semidefinite programs

Here we show that deciding if a behavior belongs to P2(δ),
or whether it must feature a genuine three-outcome POVM,
can be cast as an SDP. Let p be the behavior of interest
and p0 be arbitrary behavior in P2. For example, p0 = pI =
{p(b|x) = 1/3}. Clearly pI ∈ Pt , thus pI ∈ P2(δ). Consider
the linear combination of these two behaviors, p′ = ωp +
(1 − ω)p0, with ω > 0. Let ω∗ denote the maximal ω for
which p′ ∈ P2(δ). The quantity ω∗ tells us how far a behavior
can go along the direction from p0 to p while staying in P2(δ).
If ω∗ ! 1, it means p ∈ P2(δ), otherwise p (∈ P2(δ).

From Eq. (4), we see that the probability to use the jth
strategy can be absorbed into the POVM elements, i.e., M̃ j

b =
p jM

j
b . Then computing ω∗ can be written as the following

optimization problem with linear constraints:

maximize
M̃ j

b

ω

subject to M̃ j
b ) 0, ∀ j, b,

∑

b

M̃ j
b = 1

2
Tr

[
∑

b

M̃ j
b

]

I, ∀ j,

∑

j

1
2

Tr

[
∑

b

M̃ j
b

]

= 1, (5)

M̃ j
j = 0, ∀ j,

ωp(b|x) + (1 − ω)p0(b|x)

= Tr



|ψx〉〈ψx|
∑

j

M̃ j
b



, ∀x, b,

The first two constraints stem from the positivity and nor-
malization of M j

b , and the next two constraints guarantee
the convex combination of two-outcome POVMs. The last
constraint enforces the reproduction of the behavior.

One way to write the dual problem of the SDP above is the
following:

maximize
H j ,J j ,vb|x

η = v · (p − p0)

subject to H j = (H j )†, J j = (J j )†,

1
2
I + H j − 1

2
Tr

[
H j]I + 1

2

∑

xb′

vb′|x p0(b′|x)I

−
∑

x

vb|x|ψx〉〈ψx| + δb, jJ j ) 0 ∀ j, b (6)

where v ∈ R6, and “·” denotes the scalar product. The details
of deriving the dual problem from the primal are given in
Appendix A. Any feasible solution to the dual problem gives
an upper bound on ω∗ (ω∗ " 1

η
). Let η∗ denote the maximal

η. Any feasible point {H j, J j, v} which gives η∗ > 1 provides
a witness for genuine three-outcome POVMs, since this feasi-
bility does not depend on p. For such a feasible point, for any
behavior q that violates the inequality

v · (q − p0) " 1,

we have q (∈ P2(δ). These SDP methods are used in the next
section in specific examples.

B. Analytical characterization of boundary

Another approach to distinguishing P2(δ) and P3(δ) is to
characterize their respective boundaries. Even though deter-
mining the boundary of quantum correlation in general is
challenging, we are able to characterize them for a specific
class of behaviors.

For convenience, we write the vector p of a given behavior
in the form

(
p(0|0) p(1|0) p(2|0)
p(0|1) p(1|1) p(2|1)

)
. (7)

We defined Psym(δ) to be the subset of behaviors in P3(δ)
that are invariant to the input-output relabeling

) :
(

a b c
d e f

)
+→

(
e d f
b a c

)
.

Notice that the behaviors in Psym(δ) have the form

p(X,Y ) = X
(

1 0 0
0 1 0

)
+ Y

(
0 1 0
1 0 0

)

+ (1 − X − Y )
(

0 0 1
0 0 1

)
. (8)

From this we can see Psym(δ) is in the slice S in R6. Hence
the behaviors in Psym(δ) can be parametrized by

X = 1
2 [p(0|0) + p(1|1)]

and

Y = 1
2 [p(0|1) + p(1|0)].

Now we introduce a map, T , from a general behav-
ior to a behavior in S: T (p) = 1/2(p + )(p)). Apparently,
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T (Psym(δ)) = Psym(δ). Our interest lies in the difference of
T (P2(δ)) and T (P3(δ)) in the slice S.

Notice that ) does not change the number of genuine
measurement outcomes to reproduce a behavior because it
is just relabeling the inputs and outputs. Hence, for any p ∈
Pk (δ), it follows that )(p) ∈ Pk (δ). From the linearity of T
and the convexity of Pk (δ), we conclude that T (p) ∈ Pk (δ);
namely, Pk (δ) is closed under T .

To characterize T (P2(δ)), we can focus on the extremal
points of it because of the linearity of T and the convex-
ity of P2(δ). The extremal points are yielded by projec-
tive two-outcome POVMs and trivial POVMs. First note
that Pt = P3(δ = 1) = P2(δ = 1), and it constitutes the line
segment connecting (0,0) and (1/2, 1/2). Moreover, P3(δ =
0) = P2(δ = 0) corresponds to the full triangle with extremal
points (0,0), (0,1), and (1,0). This is because for perfectly
distinguishable states, any statistics can be produced by the
measurements. As in Eq. (4), we have three two-outcome
strategies, written as {0, K1, I − K1}, {K2, 0, I − K2}, and
{K3, I − K3, 0}, where Ki denotes one of the elements of the
ith two-outcome measurement. For convenience, we consider
projective two-outcome POVMs and trivial POVMs sepa-
rately.

Strategies {0, K1, I − K1} and {K2, 0, I − K2} yield the
same ellipse:

4(X + Y − 1/2)2

δ2
+ 4(X − Y )2

1 − δ2
= 1. (9)

Strategy {K3, I − K3, 0} contributes to the line segment of
X + Y = 1 between the points

(
1 −

√
1 − δ2

2
,

1 +
√

1 − δ2

2

)

(10)

and
(

1 +
√

1 − δ2

2
,

1 −
√

1 − δ2

2

)

. (11)

The details to derive these are given in Appendix B.
Hence, T (P2(δ)) is the convex hull of the points (0,0),

Eq. (10), Eq. (11), and the ellipse (9). T (p) /∈ T (P2(δ))
certifies a genuine three-outcome POVM. Note that this is a
nonlinear witness, contrary to the witnesses derived from an
SDP, which are linear (see Sec. III A).

To characterize T (P3), we take advantage of the symmetry
of the slice S. Since Pk (δ) is closed under T , we have
T (P3(δ)) = Psym(δ). Hence we only need to look at the
boundary of Psym(δ). To characterize the boundary of Psym(δ),
again we only need to consider extremal three-outcome
POVMs. An extremal three-outcome POVM, {M0, M1, M2},
can be parametrized as

Mb = λb(I + ub · σ ), (12)

where |ub| = 1,
∑2

b=0 λb = 1, and
∑2

b=0 λbub = 0. To meet
the requirement of normalization, Bloch vectors {ui} of the
three-outcome measurement must lie in the same plane. With-
out loss of generality, we only consider the three-outcome
POVMs that lie in the same plane as the two states (since
they represent the effects of all possible measurements on
the states). Using the SDP method discussed in Sec. III A, we

φ
λ0u0 λ1u1

λ2u2

n0 n1

FIG. 2. Schematic representation of the three-outcome POVMs
with symmetrical Bloch vectors. The first POVM element has a
Bloch vector pointing in the z direction, i.e., intermediate between
the Bloch vectors of the two quantum states (3). The other two
POVM elements correspond to Bloch vectors distributed symmet-
rically along the z axis, in the x-z plane of the Bloch sphere.

found that to outline T (P3), it is enough to consider extremal
three-outcome POVMs that have a symmetry in the Bloch
vectors as depicted in Fig. 2. Indeed, our analytical construc-
tions based on this observation appear to match precisely
the results of the SDP methods over three-outcome POVMs.
We can thus characterize all extremal three-outcome POVMs
that contribute to the T (P3(δ)) only with one parameter.
Here we choose the angle between the z axis and one of
the two symmetrical Bloch vectors, φ ∈ [−π/2,π/2]. Then
we have two Bloch vectors, u0 = (− sin φ, 0,− cos φ) and
u1 = (sin φ, 0,− cos φ). And we derive λ0 = λ1 = 1/[2(1 +
cos φ)]. These symmetric three-outcome POVMs can be char-
acterized via a single parameter, namely,

M0 = 1
2(1 + cos φ)

(
1 − cos φ sin φ

sin φ 1 + cos φ

)
,

M1 = 1
2(1 + cos φ)

(
1 − cos φ − sin φ
− sin φ 1 + cos φ

)
,

M2 = 1
(1 + cos φ)

(
2 cos φ 0

0 0

)
. (13)

Combined with the states of Eq. (3), we get an equation of the
boundary in a parametric form:

{
X = [1 − cos(φ − 2θ )]/2(1 + cos φ),
Y = [1 − cos(φ + 2θ )]/2(1 + cos φ). (14)

Finally, T (P3) is the convex hull of the trivial point (0,0)
and the curve in Eq. (14), as shown in Fig. 3(a). Figure 3(b)
shows T (P2(δ)) and T (P3(δ)) with δ = 0, 0.7, 0.9, and 1. It
again states that the assumption we need to certify is whether
it is a genuine three-outcome POVM or merely a lower bound
of δ. As δ varies from 0 to 1, T (P2(δ)) and T (P3(δ)) gradually
fills the convex hull of (0,0), (1,0), and (0,1).

Robustness against noise

Next we discuss the three-outcome POVMs that are most
robust to white noise, in other words, how much noise we can
add to the behavior before it can no longer certify a genuine
three-outcome POVM. This can be investigated using the SDP
method above.
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curve (14)
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(a)

(b)

FIG. 3. (a) Geometrical representation of the sets of T (P2(δ))
and T (P3(δ)) in S at δ = 0.7. (b) T (P2(δ)) and T (P3(δ)) of δ = 0,
0.7, 0.9, and 1. The regions of smaller overlaps cover the regions of
larger overlaps. The behaviors corresponding to the genuine three-
outcome POVM that is most robust to noise (Mrob) in Sec. III B are
marked out here using circles. The square represents the uniformly
distributed behavior.

Here we consider white noise added on the behavior. The
robustness against white noise is then characterized by 1 − ω∗

when we take p0 = pI . Through numerical optimization, we
found that the larger the overlap between the quantum states
is, the more noise the behavior can tolerate before it falls into
P2. In Fig. 4(a), we show the minimal w∗ as δ changes. Up to
10% of noise can be tolerated.

Interestingly, numerical results show that the most robust
behavior, i.e., the behavior which gives ω∗

min, would be on
the slice S. Hence the corresponding measurement has the
symmetric form given in Eq. (13), as shown in Fig. 2. For
given overlap δ, one can then find numerically the optimal
value of φ, characterizing the most robust measurement [see
Fig. 4(b)].

The optimal measurement for USD (in Sec. III C) can
tolerate at most 4% of white noise for overlap δ = 0.46. For
other values of the overlap, the noise tolerance is weaker.

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1
(a)

0 0.2 0.4 0.6 0.8 1

0.375

0.4

0.425

0.45

0.475

0.5
(b)

FIG. 4. (a) ω∗
min, which characterizes the robustness of the

POVMs against white noise in certification, corresponding to dif-
ferent δ. ω∗

min cannot go lower than 0.9 no matter how close the
quantum states are, which means that up to 10% of white noise can be
tolerated. (b) φ, the only parameter to define a most robust symmetric
extremal three-outcome POVM, as a function of δ.

C. Unambiguous state discrimination

When two states have a nonzero overlap, one cannot per-
fectly distinguish them. However, if an inconclusive output is
allowed in certain instances, this becomes possible via USD
[33–35]. Given two states, ψ0 and ψ1, the family of POVMs
{M0, M1, M∅} that can accomplish the USD task must have
Tr(Mj |ψ j̄〉〈ψ j̄ |) = 0 due to the unambiguity condition. M0 and
M1 are the elements that correspond to the definite answers,
and M∅ is the inconclusive result. The figure-of-merit in
USD is the probability of producing a definite answer, i.e.,
psucc = [p(0|0) + p(1|1)]/2. If |〈ψ0|ψ1〉| = δ and the two
states have equal occurrence probability, the maximal psucc
is 1 − δ [33–35], denoted by psucc,3. This requires a genuine
three-outcome POVM (which can be confirmed with the
method in Sec. III B).

1. Certifying genuine three-outcome POVM

Intuitively, a high psucc should certify a genuine three-
outcome POVM. To show this, we upper bound psucc, re-
stricting ourselves to behaviors in P2. To achieve USD, the
elements of the POVMs must be orthogonal to the states. To
maximize psucc, it is enough to consider extremal POVMs.
Hence the relevant binary POVMs are of the following
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FIG. 5. Maximal USD success probability for different lower
bounds on overlap. Note the hollow circle at lower bound 0. In the
extreme case where the two input states are orthogonal, they can be
perfectly distinguished with a two-outcome POVM as well. No two-
outcome measurement can distinguish two states unambiguously
with success probability larger than 1/2 when the two states are
nonorthogonal (δ > 0).

forms: {|ψ⊥
1 〉〈ψ⊥

1 |, 0, I − |ψ⊥
1 〉〈ψ⊥

1 |} and {0, |ψ⊥
0 〉〈ψ⊥

0 |, I −
|ψ⊥

0 〉〈ψ⊥
0 |}, where |ψ⊥

x 〉 is the orthogonal state of |ψx〉. Due
to convexity, one can immediately find that for two-outcome
POVMs the maximal psucc is

psucc,2 =
{

(1 − δ2)/2, 0 < δ " 1,
1, δ = 0.

(15)

Since psucc,3 > psucc,2 (see Fig. 5) when δ ∈ (0, 1), psucc can
be used as a witness for genuine three-outcome POVMs. If the
overlap of the states is lower bounded by δ, and psucc exceeds
Eq. (15), then it certifies a genuine three-outcome POVM.

Furthermore, one can certify genuine three-outcome
POVMs in terms of psucc in a way that is independent from the
overlap. For two-outcome POVMs, when δ > 0, psucc " 1/2.
Thus whenever psucc ! 1/2 is observed (and no error occurs),
it can be inferred that the measurement box is a genuine
three-outcome POVM.

2. Self-testing

A high success probability for USD not only certifies
genuine three-outcome POVMs, it may even uniquely iden-
tify the states and measurement. In this section, we show
that under the assumption of bounded overlap 〈ψ0|ψ1〉 ! δ,
having psucc = 1 − δ self-tests two qubit states of overlap δ
and the optimal USD measurement. To be precise, follow-
ing Ref. [15], we say a behavior self-tests the measurement
{M̄ j} in Hilbert space H̄ if for every quantum realization
(|ψ0〉, |ψ1〉, {Mj}) in Hilbert space H compatible with the be-
havior there exists a completely positive and trace-preserving
map + : B(H̄) → B(H), such that

Tr(Mj+(|ψ̄〉〈ψ̄ |)) = Tr(M̄ j |ψ̄〉〈ψ̄ |) (16)

is satisfied for any |ψ̄〉 ∈ H̄ and j = 0, 1, ∅.
In our case, H̄ = C2, and the ideal states |ψ̄x〉 are given in

Eq. (3), with overlap δ. For the input states, on the one hand

we have |〈ψ0|ψ1〉| ! δ by assumption, and on the other hand
psucc = 1 − δ implies |〈ψ0|ψ1〉| " δ. Hence, |〈ψ0|ψ1〉| = δ.

For the measurements, it is sufficient to construct the map
as +(·) = K (·)K†, where K : C2 → H,

|0〉 → (|ψ0〉 + |ψ1〉)/2c,

|1〉 → (|ψ0〉 − |ψ1〉)/2s, (17)

and the ideal measurement M̄ is

M̄0 = 1
1 + δ

|ψ̄⊥
1 〉〈ψ̄⊥

1 |,

M̄1 = 1
1 + δ

|ψ̄⊥
0 〉〈ψ̄⊥

0 |,

M̄∅ = I − M̄0 − M̄1, (18)

where |ψ̄⊥
1 〉 = (s|0〉 + c|1〉), |ψ̄⊥

0 〉 = (s|0〉 − c|1〉). It re-
mains to show that Eq. (16) is satisfied for any qubit
states ρ.

Writing an arbitrary qubit state as ρ =
∑

i, j ρi j |i〉〈 j|, we
have

+(ρ) = 1
4

1∑

i, j=0

|ψi〉〈ψ j |
(

1
c2

ρ00 + (−1) j

cs
ρ01

+ (−1)i

cs
ρ10 + (−1)i+ j

s2
ρ11

)
. (19)

From the optimal USD behavior

p(b|x) =
(

1 − δ 0 δ
0 1 − δ δ

)

[written in the same manner of Eq. (7)], we have
Tr(Mj |ψ j〉〈ψ j |) = 1 − δ and Tr(Mj |ψ j̄〉〈ψ j̄ |) = 0. Exploiting
the positivity of Mk , we have 〈ψ j̄ |Mj |ψ j̄〉 = 0 ⇔ Mj |ψ j̄〉 =
0, thus Tr(Mk|ψ j〉〈ψ j′ |) = 0 except

Tr(Mk|ψk〉〈ψk|) = 1 − δ. (20)

Take Tr(M0+(ρ)) as an example:

Tr(M0+(ρ)) = 1
1 + δ

(s2ρ00 + csρ01 + csρ10 + c2ρ11). (21)

This is achieved by combining Eq. (20) and δ = c2 − s2. By
rewriting

M̄0 = 1
1 + δ

(s|0〉 + c|1〉)(s〈0| + c〈1|),

one can arrive at Tr(M̄0ρ) = Tr(M0+(ρ)). One can check
similarly for M1 with M̄1 and M∅ with M̄∅, which completes
the proof.

IV. RANDOMNESS

We briefly discuss the connection between our results and
the task of randomness generation. Clearly, the certification
of more than one bit of randomness implies a genuine three-
outcome POVM [39]. It turns out however that genuine
three-outcome measurements do not necessarily imply more
randomness. There exist genuine three-outcome POVMs that
can certify nearly zero randomness. For example, consider
a binary POVM with Bloch vectors aligned with one of the
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FIG. 6. Randomness certifiable by different POVMs mixed with
white noise: dashed line for Popt, and solid line for Prob. The gap
between the randomness is more apparent when ξ is small (e.g., at
the given overlaps, when ξ is smaller than 0.2). When ξ is larger, the
two families of measurements give approximatively the same entropy
Hmin.

quantum states. From this, we can generate a three-outcome
POVM by slightly rotating and shrinking the POVM elements,
and thus allowing a small weight on a third component. In
this case, we can obtain a three-outcome POVM that can be
certified to be genuine, but at the same time certifies only little
randomness. As a more concrete example, for δ = 0.9, the
behavior of the optimal USD measurement can only certify
0.15 bit of randomness (computed via an SDP as in Ref. [30]).

Moreover, we investigated the advantage of the optimal
POVM for randomness in Ref. [39], denoted by Mopt, over
other POVMs in the presence of noise. We compare the
randomness that can be certified by Mopt with that of the most
robust genuine three-outcome POVM (discussed in Sec. III B
and now referred to as Mrob) in the presence of white noise
(see Fig. 6). That is, for behaviors of the form p′

opt(rob) =
(1 − ξ )popt(rob) + ξ pI , we compute the minimal entropy it can
certify as a function of ξ . The conclusion is that although Mopt
can certify the most randomness in the ideal, noiseless case,
this advantage vanishes once there is noise.

V. CONCLUSION

We discussed the problem of characterizing an unknown
POVM in a semi-DI prepare-and-measure scenario, based
on the assumption of a minimum overlap between the pre-
pared quantum states. We developed several methods for this
problem and showed how a genuine three-outcome POVM
can be certified. Furthermore, we showed that it is possible
to self-test the optimal measurement for unambiguous state
discrimination in this framework.

It would be interesting to see if other properties of quantum
systems can be certified in this setting and if other mea-
surements can be self-tested, in particular in the presence
of noise. A relevant problem is the certification of genuine
d-outcome POVMs, which would require a scenario with
at least d − 1 preparations. In this case, the assumptions of
limited distinguishability of the set of prepared states could
be formalized in different possible ways.
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APPENDIX A: DUAL PROBLEM

In this section, we show one possible way to dualize the
SDP from Eq. (5) to Eq. (6). We use a method similar to that
used as in Ref. [30]. First we transform the primal problem.
Let N j

b = 1
ω

p jM
j
b = 1

ω
M̃ j

b . From the third constraint of Eq. (5)
we immediately have 1

ω
= 1

2 Tr
∑

j,b N j
b . Since maximizing ω

is equivalent to minimizing 1
ω

, which we denote by η, the
primal problem can be rewritten as follows:

min
N j

b

η = 1
2

Tr
∑

j,b

N j
b

subject to N j
b ) 0, ∀ j, b,

∑

b

N j
b = 1

2
Tr

(
∑

b

N j
b

)

I, ∀ j,

N j
j = 0, ∀ j,

p(b|x) + (η − 1)p0(b|x)

= Tr



|ψx〉〈ψx|
∑

j

N j
b



, ∀x, b. (A1)

Introduce Hermitian matrices Gj
b, H j , and J j , and real

scalars vb|x as Lagrange multipliers to each constraints in the
primal problem. The Lagrangian associated with Eq. (A1)
reads

L =1
2

∑

j,b

Tr
(
N j

b

)
+

∑

j,b

Tr
(
Gj

bN j
b

)

+
∑

j,b

Tr
{

H j
[

N j
b − 1

2
Tr

(
N j

b

)
I
]}

+
∑

j,b

δ j,bTr
(
N j

b J j)

+
∑

x,b

vb|x




p(b|x) − Tr



|ψx〉〈ψx|
∑

j

N j
b





+p0(b|x)



1
2

∑

j,b′

Tr
(
N j

b′

)
− 1








, (A2)

where j, b, and b′ range from 0 to 2, and x ranges from 0 to 1.
We define S to be the infimum of the Lagrangian over

the primal SDP variables, namely, S = infN j
b
L. To let S be

able to lower bound the primal objective function, for any
particular solution N j

b , L should be smaller than the value
of the primal problem. In order to achieve this, the second
term of Eq. (A2) should be negative, which requires Gj

b " 0,
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while the following three terms vanish automatically for N j
b

that satisfy the constraints in Eq. (A1).
Now we maximize S over the Lagrangian multipliers to

get a tighter lower bound of L. By rearranging the terms of
Eq. (A2), we have

S =
∑

b,x

vb|x[p(b|x) − p0(b|x)] + inf
N j

b

∑

j,b

Tr
[
N j

b K j
b

]
, (A3)

where

K j
b =1

2
I + Gj

b + H j − 1
2

Tr(H j )I + 1
2

∑

x,b′

vb′|x p0(b′|x)I

−
∑

x

vb|x|ψx〉〈ψx| + δ j,bJ j . (A4)

Since there is no constraint on N j
b in the Lagrangian, to make

Eq. (A3) nontrivial, namely, S > −∞, K j
b is restricted to be

zero. We can solve K j
b = 0 for Gj

b and substitute it into Gj
b "

0, which is the third constraint of Eq. (6).

APPENDIX B: DETAILED CALCULATIONS FOR THE
ANALYTIC BOUNDARY OF P2(δ) IN THE

SYMMETRIC SLICE

To characterize T (P2(δ)), we write the two quantum states
as { 1

2 (I + nx · σ)}1
x=0 and the projective two-outcome POVMs

as { 1
2 (I ± u · σ)}, where nx and u are the Bloch vectors and

σ is the vector of Pauli operators. According to Eq. (3),

nx = [(−1)x sin 2θ , 0, cos 2θ ]. For strategy {0, K1, I − K1},
we have

X = 1
4 (1 + n1 · u),

Y = 1
4 (1 + n0 · u). (B1)

We find that

X + Y = 1
2 + 1

4 (n0 + n1) · u,

X − Y = 1
4 (n0 − n1) · u. (B2)

Since (n0 + n1) ⊥ (n0 − n1) and u is a unit vector, we have
[

u · (n0 + n1)
|n0 + n1|

]2

+
[

u · (n0 − n1)
|n0 − n1|

]2

= 1. (B3)

Rewriting Eq. (B3) in terms of Eq. (B2) leads to Eq. (9).
This works for strategy {K2, 0, I − K2} also. As to strategy

{K3, I − K3, 0}, immediately we have X + Y = 1, but not all
the points on the line are accessible. Note that

X/Y =
1 + 1

2 u0 · (n0 − n1)

1 − 1
2 u0 · (n0 − n1)

∈
[

1 −
√

1 − δ2

1 +
√

1 − δ2
,

1 +
√

1 − δ2

1 −
√

1 − δ2

]

;

we have that only the line segment between vertices (10) and
(11) is valid. Combined with the vertices contributed by trivial
measurements, we know that the (X,Y ) allowed by the convex
combination of two-outcome POVMs is the convex hull of
points {(0, 0), Eq. (10), Eq. (11)} and the ellipse (9).
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