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Abstract
We present an iterative method to solve the multipartite quantum state esti-
mation problem. We demonstrate convergence for any informationally com-
plete set of generalized quantum measurements in every !nite dimension. Our
method exhibits fast convergence in high dimensions and strong robustness
under the presence of realistic errors both in state preparation and measure-
ment stages. In particular, for mutually unbiased bases and tensor product of
generalized Pauli observables it converges in a single iteration.
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1. Introduction

Quantum state estimation is the process of reconstructing the density matrix from measure-
ments performed over an ensemble of identically prepared quantum systems. In the early days
of quantum theory, Pauli posed the question of whether position and momentum probability
distributions univocally determine the state of a quantum particle [1], something that holds
in classical mechanics. However, quantum states belong to an abstract Hilbert space whose
dimension exponentially increases with the system’s number of particles. Thus, more infor-
mation than classically expected is required to determine the state. Since then, there has been
increased interest in !nding methods to estimate the state of a quantum system from a given
set of measurements and several solutions appeared. For instance, standard state tomography
[2] reconstructs d-dimensional density matrices from O(d3) rank-one projective valued mea-
sures (PVM), whereas mutually unbiased bases (MUBs) [3, 4] and symmetric informationally
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complete (SIC) positive operator valued measures (POVM) [5] do the same task with O(d2)
rank-one measurement projectors. In general, any tight quantum measurement [6], equivalently
any complex projective two-design, is informationally complete [7].

Quantum state tomography !nds applications in communication systems [8], dissociating
molecules [9] and characterization of optical devices [10]. It is a standard tool for veri!cation
of quantum devices, e.g. estimating !delity of two photon CNOT gates [11], and has been used
to characterize quantum states of trapped ions [12], cavity !elds [13], atomic ensembles [14]
and photons [15].

Aside from the experimental procedure of conducting a set of informationally complete
measurements on a system, quantum tomography requires an algorithm for reconstructing the
state from the measurement statistics. From a variety of techniques proposed, the approaches
featuring in the majority of experiments are variants of linear inversion (LI) and maximum-
likelihood quantum state estimation (MLE) [16]. As its name suggests, with LI one determines
the state of the quantum system under consideration by inverting the measurement map solv-
ing a set of linear equations with the measurement data as input. For relevant families of
informationally-complete set of measurements, analytical expressions for the inverse maps
are known, signi!cantly speeding up the whole reconstruction effort, see e.g. [17]. MLE con-
sists in !nding the state that maximizes the probability of obtaining the given experimental
data set, among the entire set of density matrices. Within the different implementations of this
basic last idea, those currently achieving the best runtimes are variants of a projected-gradient-
descent scheme, see [18, 19]. Algorithms based on variants of linear inversion [20, 21] are
typically faster than those implementing MLE when the inversion process is taken from already
existing expressions [22]. On the other hand, when restrictions on the rank of the state being
reconstructed apply, techniques based on the probabilistic method of compressed-sensing have
proven to be very satisfactory [23–25]. In particular, the statistics based on !ve rank-one
projective measurements is good enough to have a high–!delity reconstruction of rank-one
quantum states, even under the presence of errors in both state preparation and measurement
stages [26]. In this work, we present a general method for quantum state estimation achieving
better !delities than the state-of-the-art implementations of MLE.

This paper is organized as follows. In section 2, we introduce the main ingredient of our
algorithm: the physical imposition operator, a linear operator having an intuitive geometrical
interpretation. In section 3, we present our iterative algorithm for quantum state estimation
based on the physical imposition operator and prove its convergence. In section 3.1 we show
that for a wide class of quantum measurements, which include MUBs and tensor product
of generalized Pauli observables for N qudit systems, convergence is achieved in a single
iteration. In section 4, we numerically study the performance of our algorithm in terms of
runtime and !delity estimation, !nding an improvementwith respect to the most ef!cient MLE-
based method, as far as we know. Finally, in section 5 we provide conclusions and future lines
of research. Proofs of all our results are presented in appendix A.

2. Imposing physical information

Consider an experimental procedure P that prepares a quantum system in some unknown state
ρ. Let us assume that, given some prior knowledge about P , our best guess for the state of
the system ρ0, which could be even the maximally mixed state in absence of prior information.
Next, we perform a POVM measurement A composed by mA outcomes, i.e. A = {Ei}i!mA on an
ensemble of systems independently prepared according to P , obtaining the outcome statistics
"p = {pi}i!mA . Given this newly acquired information,
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how can we update ρ0 to re!ect our new state of knowledge about the system?

To tackle this question, we introduce the physical imposition operator, a linear map that
replaces the initial predictions about observable A contained in ρ0 with an experimentally
observed probability pi.

Definition 2.1 (Physical imposition operator). Let A = {Ei}i!mA be a POVM acting
on a d-dimensional Hilbert space Hd and let "p ∈ RmA be a probability vector. The physical
imposition operator associated to Ei and pi is the linear map

T pi
Ei

(ρ) = ρ +
(pi − Tr[ρEi])Ei

Tr(E2
i )

, (1)

for every i ! mA.

In order to clarify the meaning of the physical imposition operator (1) let us assume for the
moment that A is a projective measurement. In such a case, operator T pi

Ei
(ρ) takes a quantum

state ρ, removes the projection along the direction Ei, i.e. it removes the physical informa-
tion about Ei stored in the state ρ, and imposes a new projection along this direction weighted
by the probability pi. Here, pi can be either taken from experimental data or simulated by
Born’s rule with respect to a target state to reconstruct. Note that operator ρ′ = T pi

Ei
(ρ) re"ects

the experimental knowledge about the quantum system. As we will show in section 3, a succes-
sive iteration of PIO along an informationally complete set of quantum measurements allows
us to reconstruct the quantum state. For POVM in general, operator (1) does not entirely impose
the information about the outcome. However, after several imposition of all involved operators
PIO the sequence of quantum states successfully converges to a quantum states containing all
the physical information, as we demonstrate in theorem 3.1. To simplify notation, along the
work we drop the superscript pi in T pi

Ei
when the considered probability pi is clear from the

context.
Let us now state some important facts about PIOs that easily arise from de!nition 2.1.

From now on, D(ρ, σ) := Tr[(ρ− σ)2] denotes the Hilbert–Schmidt distance between states ρ
and σ.

Proposition 2.1. The following properties hold for any POVM {Ei}i!mA and any ρ, σ acting
on Hd:

(a) Imposition of physical information: Tr[T pi
Ei

(ρ)Ei] = pi.
(b) Composition: T

pj
E j
◦ T pi

Ei
(ρ) = T pi

Ei
(ρ) + T

pj
E j

(ρ) − ρ− (pi − Tr(ρEi)) Tr(EiE j)E j/ Tr (E j)2.
(c) Non-expansiveness: D(T

pj
E j

(ρ), T
pj
E j

(σ)) ! D(ρ, σ).

Some important observations arise from proposition 2.1. First, for j = i in the above item
(b) we !nd that

T2
Ei

(ρ) = TEi(ρ), (2)

for any ρ, so operator TEi is an orthogonal projection, for every i ! mA and any POVM
{Ei}i!mA . Note that any quantum state σ = TEi (ρ) is a !xed point of TEi , i.e. TEi (σ) = σ,
which simply arises from (2). Roughly speaking, quantum states already having the physical
information we want to impose are !xed points of the map TE j . This key property allows us to
apply dynamical systems theory [27] to study the tomographic problem. We consider the alter-
nating projection method, !rstly studied by von Neumann [28] for the case of two alternating
projections and generalized by Halperin to any number of projections [29].

In theorem 3.1, we will show that composition of all physical imposition operators
associated to an informationally complete set of POVM produces a linear map having a unique
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attractive !xed point, i.e., the solution to the quantum state tomography problem. The unique-
ness of the !xed point guarantees a considerable speed up of the method in practice, as any
chosen seed monotonically approaches to the solution of the problem.

To simplify notation, we consider a single physical imposition operation TA for an entire
POVM A, de!ned as follows

TA = TEmA
◦ . . . ◦ TE1 . (3)

Up to a constant factor proportional to identity, that we omit, operator TA reduces to

TA(ρ) =
mA∑

i=1

TEi (ρ), (4)

for any PVM A, what follows from considering (3) and proposition 2.1. This additive property
holding for PVM measurements plays an important role, as it helps to reduce the runtime of
our algorithm. Precisely, this fact allows us to apply Kaczmarz method [30] instead of Halper-
ing alternating projection method, for any informationally complete set of PVM. Kaczmarz
method considers projections over the subspace generated by the intersection of all associated
hyperplanes, de!ned by the linear system of equations (Born’s rule).

Let us introduce another relevant concept

Definition 2.2 (Generator state). Given a POVM A = {Ei}i!mA and a probability vec-
tor "p ∈ RmA , a quantum state ρgen is called generator state for "p if Tr(ρgenEi) = pi, for every
i ! mA.

Note that ρgen is a !xed point of TEi , according to (3) and proposition 2.1. State ρgen plays
an important role to implement numerical simulations, as it guarantees to generate sets of
probability distributions compatible with the existence of a positive semide!nite solution to
the quantum state tomography problem.

To end this section, note that map TA de!ned in (4) has a simple interpretation in the Bloch
sphere for a qubit system, see !gure 1. The image of TA, i.e. TA[Herm(H2)], is a plane that
contains the disk

D"p
A = {z = p2 − p1|z = Tr(ρσz), pi = Tr(ρEi), ρ " 0, Tr(ρ) = 1},

i.e. the disk contains the full set of generator states ρgen. Note that TA is not a completely
positive trace preserving (CPTP) map, as TA[Herm(H2)] extends beyond the disk D"p

A, i.e. out-
side the space of states. Indeed, for any state ρ that is not a convex combination of projectors
Ei, there exists a probability distribution"p such that TA(ρ) is not positive semi-de!nite. Roughly
speaking, any point inside the Bloch sphere from !gure 1 but outside the blue vertical line is
projected by TA outside the sphere, for a suf!ciently small disk D"p

A.

3. Algorithm for quantum state estimation

In the practice of quantum state tomography, one collects a set of probability distribu-
tions "p1, . . . , "p$ from a set of $ POVM measurements A1 = {E(1)

i }i!m1 , . . . , A$ = {E($)
i }i!m$ ,

implemented over an ensemble of physical systems identically prepared in a quantum state
ρgen. The statistics collected allows a unique state reconstruction when considering an
informationally-complete (IC) sets of observables A1, . . . , A$. Our algorithm for quantum state
estimation, algorithm 1 below, de!nes a sequence of Hermitian operators ρn, not necessarily
composed by quantum states, that converges to the unique quantum state that is solution to
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Figure 1. Bloch sphere representation for a single qubit system and PVM measurements.
The blue arrows de!ne eigenvectors of σz. The disk shown represents the entire set of
quantum states ρgen satisfying equations pj = Tr(ρgenE j), j = 0, 1, where {E j} is the
set of rank-one eigenprojectors of an observable and {pj} the set of probabilities experi-
mentally obtained. The action of TA over the initial state ρ0 (orange dot) is the orthogonal
projection to the plane that contains the disk (blue dot).

Algorithm 1. Quantum state estimation algorithm.

Input: dimension d ∈ N, POVMs A1, . . . , A$ acting on Hd ,
experimental frequencies "f 1, . . . , "f $ ∈ Rm and accuracy ε ∈ [0, 1].

Output: estimate ρest ∈ B(Hd).
ρ0 = I/d
ρ = TA$ ◦ . . . ◦ TA1 (ρ0)
repeat
ρold = ρ
ρ = TA$ ◦ . . . ◦ TA1 (ρold)
Until D(ρ, ρold) ! ε
Return arg minρest∈D(Hd)D(ρ,ρest)

the tomography problem, i.e. ρgen. For the moment, we assume error-free state tomography
in our statements. The algorithm applies to any !nite dimensional Hilbert space Hd, and any
informationally complete set of quantum observables.

In algorithm 1, D(Hd) denotes the set of density operators over Hd. Theorem 3.1 below
asserts the convergence of algorithm 1 when the input frequencies are exact, i.e. Born-rule,
probabilities of an IC set of POVMs.

Theorem 3.1. Let A1, . . . , A$ be a set of informationally complete POVMs acting on a
Hilbert space Hd, associated to a compatible set of probability distributions "p1, . . . , "p$.
Then, algorithm 1 converges to the unique solution to the quantum state tomography problem.
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Here, compatibility refers to the existence of a quantum state associated to exact probability
distributions "p1, . . . , "p$ what is guaranteed when probabilities come from a generator state
ρgen. Theorem 3.1 asserts that the composite map TA$ ◦ . . . ◦ TA1 de!nes a dynamical system
having a unique attractive !xed point. The successive iterations of algorithm 1 de!ne a Picard
sequence [31]:

ρ0 = I/d,

ρn = TA$ ◦ . . . ◦ TA1 (ρn−1), n " 1. (5)

Note that for arbitrary chosen set of observables, the composition of physical imposition oper-
ators depends on its ordering. According to theorem 3.1, this ordering does not affect the
success of the convergence in in!nitely many steps. However, in practice one is restricted
to a !nite sequence, where different orderings produce different quantum states as an output.
Nonetheless, such difference tends to zero when the state ρn is close to the attractive !xed point,
i.e. solution to the state tomography problem. According to our experience from numerical sim-
ulations, we did not !nd any advantage from considering a special ordering for composition
of operators.

Figure 2 shows the convergence of ρn in the Bloch sphere representation for a single
qubit system and three PVMs taken at random. For certain families of measurements, e.g.
MUBs and tensor product of Pauli matrices, the resulting Picard sequences and, therefore,
algorithm 1 converge in a single iteration, see proposition 3.2. That is, ρn = ρ1 for every n " 1.
We numerically observed this same behavior for the 3N product Pauli eigenbases in the space
of N-qubits, with 1 ! N ! 8, conjecturing that it holds for every N ∈ N, see section 4.2.

In a previous work [32], a related algorithm was introduced for quantum state estimation.
However, it has several disadvantages with respect to our work, namely: (i) it works for pure
states only; (ii) the dynamics is non-linear, requiring a large runtime to converge (iii) conver-
gence to the target state is not guaranteed. The main reason behind this last property is the
existence of a large amount of undesired basins of attraction, as the solution to the problem
is not the only attractive !xed point; !nally, (iv) realistic state reconstruction is not possible
due to the impossibility to introduce realistic noise, as it destroys purity. Note that algorithm
1 does not reduce to the one de!ned in reference [32] when reconstructing pure states, as our
imposition operator is linear.

3.1. Ultra-fast convergence

When considering maximal sets of MUBs, the Picard sequences featuring in algorithm 1 con-
verge in a single iteration. This is so because the associated imposition operators commute for
MUB. This single-iteration convergence is easy to visualize in the Bloch sphere for a qubit
system, as the three disks associated to three MUB are mutually orthogonal, and orthogonal
projections acting over orthogonal planes keep the impositions within the intersection of the
disks. The same argument also holds in every dimension. Let us formalize this result.

Proposition 3.1. Let TA and TB be two physical imposition operators associated to two
MUBs A and B. Therefore,

TB ◦ TA = TA ◦ TB = TA + TB − I. (6)

In particular, note that TA and TB commute.

Also, it is easy to see from item (b), proposition 2.1 that operators TEi commute when con-
sidering Ei equal to the tensor product local Pauli group. In this case, operators Ei do not
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Figure 2. Graphical representation of the convergence of algorithm 1 in the Bloch sphere
for a single qubit system. We show convergence for three incompatible PVMs A1, A2
and A3, de!ning disks D1 (gray), D2 (green) and D3 (red) on the Bloch sphere. The
initial state ρ0 (orange dot), which we have chosen different from I/2 only for graphical
purposes, is !rst projected to D1. The corresponding point in D1 is then projected to D2
and that projection is later projected to D3. The iteration of this sequence of projections
successfully converges to the generator state ρgen (red dot), the unique solution to the
quantum state tomography problem.

form a POVM but given that they de!ne an orthogonal basis in the matrix space, they are an
informationaly complete set of observables. Let us now show the main result of this section:

Proposition 3.2. Algorithm 1 converges in a single iteration to the unique solution of the
quantum state tomography problem for product of generalized Pauli operators and also for
d + 1 MUBs, in any prime power dimension d.

We observe from simulations that the speedup predicted by proposition 3.2 has no con-
sequences in the reconstruction !delity of our method, which is actually higher than the one
provided by MLE.

4. Numerical study

Theoretical developments from sections 2 and 3 apply to the ideal case of error free prob-
abilities coming from an exact generator state ρgen. In practice, probabilities are estimated
from frequencies, carrying errors due to !nite statistics. Moreover, the states being prepared
in each repetition of the experiment are affected by unavoidable systematic errors. These
sources of errors imply that the output of algorithm 1 is typically outside the set of quantum
states when considering experimental data. We cope with this situation by !nding the closest
quantum state to the output, called ρest in Hilbert–Schmidt (a.k.a. Frobenius) distance, for
which there are closed-form expressions [17]. In the following, we provide numerical evi-
dence for robustness of our method in the !nite-statistics regime with white noise affecting
the generator states, i.e. errors at the preparation stage. That is, we consider noisy states of the
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form ρ̃(λ) = (1 − λ)ρ + λI/d, where λ quanti!es the amount of errors. We understand there
are more sophisticated techniques to consider errors, e.g. ill-conditioned measurement matrices
[19]. Nonetheless, we believe the consideration of another model to simulate a small amount
of errors would not substantially change the exhibited results. We reconstruct the state for
N-qubit systems with 1 ! N ! 8, by considering the following sets of measurements:
(a) MUBs, (b) tensor product of local Pauli bases and (c) a set of d + 1 informationally com-
plete bases taken at random with Haar distribution. The last case does not have a physical
relevance but illustrates performance of our algorithm for a set of measurements de!ned in
an unbiased way. As a benchmark, we compare the performance of our method with the con-
jugate gradient, accelerated-gradient-descent (CG-AGP) implementation of maximum likeli-
hood estimation (MLE) [18]. Computations were conducted on an Intel core i5-8265U laptop
with 8 gb RAM. For the CG-AGP algorithm, we used the implementation provided by authors
of reference [18], see reference [33]. We provide an implementation of our algorithm 1 in
Python [34], together with the code to run the simulations presented in the current section.

4.1. Mutually unbiased bases

Figure 3 shows performance of algorithm 1 in the reconstruction of N-qubit density matrices
from the statistics of a maximal set of 2N + 1 MUBs. We consider a generator state ρgen in
dimension d, taken at random according to the Haar measure distribution, with the addition
of a 10% level of white noise, i.e. ρ̃(λ) = (1 − λ)ρ + λI/2N , with λ = 0.1. Here, it is impor-
tant to remark that !delities are compared with respect to the generator state ρgen, so that the
additional white noise re"ects the presence of systematic errors in the state preparation process.
Probabilities are estimated from frequencies, i.e. f j = N j/N with N j the number of counts
for outcome j of some POVM and N =

∑
jN j the total number of counts. Our simulations

consider N = 100 × 2N samples per measurement basis. Our !gure of merit is the !delity
F(ρn, ρgen) = Tr

√√
ρgenρn

√
ρgen

2 between the reconstructed state after n iterations ρn and the
generator state ρgen. Runtime of the algorithm is averaged over 50 independent runs, each of
them considering a generator state ρgen chosen at random according to the Haar measure.

4.2. N-qubit Pauli bases

Here, we consider the reconstruction of N-qubit density matrices from the 3N PVMs determined
by all the products of single qubit Pauli eigenbases, for N = 1, . . . , 8. Similarly to the case of
MUBs, Picard sequences ρn = Tn

Pauli(ρ0) converge in a single iteration when product of Pauli
measurements are considered, for any generator state ρgen and any initial state ρ0. Figure 4
shows performance of a single iteration of these Picard sequences, where the generator state
ρgen is taken at random, according to the Haar measure. Algorithm CG-AGP exploits the prod-
uct structure of the N-qubit Pauli bases to speedup its most computationally expensive part: the
computation of the probabilities given by the successive estimates in the MLE optimization.
It does so by working with reduced density matrices which, in turn, imply an ef!cient use of
memory. In order to have a fair comparison with our method, we decided to include the time to
compute the N-qubit observables from the single Pauli observables in the total runtime of our
algorithm. In practice, however, one would preload them into memory, as they are, of course,
not a function of the input, i.e. of the observed probabilities. Nonetheless, !gure 4 shows that
our algorithm 1 has better !delities with respect to the algorithm provided in reference [18].
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Figure 3. Performance of algorithm 1 and the CG-AGP super-fast MLE method from
[18], for the reconstruction of N-qubit states from a maximal set of d + 1 = 2N + 1
MUB in dimension d = 2N. Generator state ρ is chosen at random by considering the
Haar measure distribution, subjected to 10% of white noise and !nite statistics satisfying
Poissonian distribution. For simulations we consider 100 × 2N samples. Figure 3(a) con-
siders runtime of the algorithm in seconds, averaged over 50 trials, whereas !gure 3(b)
shows !delity between the target and obtained state, also averaged over 50 trials. Despite
our runtime is about 1 order of magnitude faster than the super-fast MLE, it is worth to
mention that we consider simulations in Python and reference [18] considers Matlab, so
it is not fair to conclude that our algorithm is faster.

Figure 4. Performance of algorithm 1 and the CG-AGP super-fast MLE [18], for the
reconstruction of N-qubit states from 3N PVM given by products of the eigenbases
of local Pauli observables σX, σY and σZ. Generator states ρ are chosen at random
(Haar measure), subjected to 10% of white noise and !nite statistics satisfying Poisso-
nian distribution, considering 500 × 2N samples per PVM. Figure 4(a) considers runtime
of the algorithm in seconds, whereas !gure 4(b) shows !delity between the target state
ρ and reconstructed state, averaged over 50 trials in both cases. We consider simulations
in Python, whereas reference [18] considers Matlab, so it is not fair to conclude that our
algorithm is faster.

4.3. Random measurements for N-qubit systems

The simulations in the preceding subsections correspond to informationally complete sets of
measurements for which algorithm 1 converges in a single iteration. To test whether the advan-
tage over [18] hinges critically on this fact, we have numerically tested our algorithm with sets
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Figure 5. Performance of algorithm 1 and the CG-AGP super-fast MLE method from
[18] for the reconstruction of N-qubit states from a set of d + 1 = 2N + 1 basis cho-
sen Haar-random in dimension d = 2N. Algorithm 1 was run for 25 steps or until the
Hilbert–Schmidt distance between successive iterates was below ε = 10−6, whichever
happens !rst. Generator state ρ is chosen at random by considering the Haar measure
distribution, subjected to 10% of white noise. Measurement statistics are estimated from
N = 100 × 2N identical copies. Figure 5(a) considers the runtime of the algorithm in
seconds, averaged over 50 trials, whereas !gure 5(b) shows the !delity between the tar-
get and obtained state, also averaged over 50 trials. We consider simulations in Python,
whereas reference [18] considers Matlab, so it is not fair to conclude that our algorithm
is faster.

of PVMs selected at random, with respecto to the Haar measure. In !gure 5 we show that in
this case, the advantage in !delity increases substantially, compared to !gures 3 and 4.

Finally, we would like to mention the projective least squares (PLS) quantum state
reconstruction [22]. This method outperforms both in runtime and !delity our algorithm 1.
This occurs when the linear inversion procedure required by the method is not solved but taken
from analytically existing reconstruction formula. Existing inversion formulas are known for
complex projective two-designs, measurement composed by stabilizer states, Pauli observ-
ables and uniform/covariant POVM, see [22]. However, when taking into account the cost of
solving the linear inversion procedure, our method has a considerable advantage over PLS.
For instance, PLS does not have such ef!cient speed up for a number of physically relevant
observables for which there is no explicit inversion known, including the following cases:
(a) discrete Wigner functions reconstruction for arbitrary dimensional boson and fermions
quantum systems from discrete quadratures, that be treated as observables by considering
Ramsey techniques [35], (b) reconstruction of single quantized cavity mode from magnetic
dipole measurements with Stern–Gerlach apparatus [36], (c) minimal state reconstruction
of d-dimensional quantum systems from POVM consisting on d2 elements, inequivalent to
SIC-POVM [37], (d) spin s density matrix state reconstruction from Stern–Gerlach measure-
ments [38], (e) quantum state tomography for multiparticle spin 1/2 systems [39], neither
reduced to MUBs nor local Pauli measurements.

5. Discussion and conclusions

We introduced an iterative method for quantum state estimation of density matrices from
any informationally complete set of quantum measurements in any !nite dimensional Hilbert
space. We demonstrated convergence to the unique solution for any informationally complete
or overcomplete set of POVMs, see theorem 3.1. The method, based on dynamical systems
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theory, exhibited a simple and intuitive geometrical interpretation in the Bloch sphere for a
single qubit system, see !gures 1 and 2. Our algorithm revealed an ultra-fast convergence
for a wide class of measurements, including MUBs and tensor product of generalized Pauli
observables for an arbitrary large number of particles having d internal levels. These results
improved !delities reported by the CG-AGP super-fast MLE estimation [18] for all the studied
cases, see section 3.1. Furthermore, numerical simulations revealed strong robustness under the
presence of realistic errors in both state preparation and measurement stages, see !gures 3–5.
We provided an easy to use code developed in Python to implement our algorithm, see [34].

As interesting future lines of research, we pose the following list of open issues: (i) !nd
an upper bound for !delity reconstruction of algorithm 1 as a function of errors and number
of iterations; (ii) characterize the full set of quantum measurements for which algorithm 1
converges in a single iteration; (iii) extend our method to quantum process tomography.

Data availability statement

All data that support the !ndings of this study are included within the article and the
computational code provided in Ref. [34].
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Appendix A. Proof of results

In this section we provide the proofs of all our results.

A.1. Algorithm for quantum state estimation

Proposition 2.1. The following properties hold for any POVM {Ei}i!m and any ρ acting
on Hd:

(a) Imposition of physical information: Tr[T pi
Ei

(ρ)Ei] = pi.
(b) Composition: T

pj
E j
◦ T pi

Ei
(ρ) = T pi

Ei
(ρ) + T

pj
E j

(ρ) − ρ− (pi − Tr(ρEi)) Tr(EiE j)E j/ Tr (E j)2.
(c) Non-expansiveness: D(T

pj
E j

(ρ), T
pj
E j

(σ)) ! D(ρ, σ).

Proof. Items (a) and (b) easily arise from de!nition 2.1. In order to show the non-
expansiveness stated in item (c), let us apply de!nition 1 to two states ρ and σ, belonging
to Hd , i.e.
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T pi
Ei

(ρ) = ρ +
(pi − Tr[ρEi])Ei

Tr(E2
i )

, (A1)

T pi
Ei

(σ) = σ +
(pi − Tr[σEi])Ei

Tr(E2
i )

. (A2)

Subtracting (A1) from (A2)

TEi (ρ) − TEi (σ) = (ρ− σ) − Tr[(ρ− σ)Ei]Ei

Tr(E2
i )

, (A3)

where we dropped the upper index pi from T pi
Ei

. Now, let us compute

D(TE j(ρ), TE j(σ))2 = Tr
[(

TEi (ρ) − TEi(σ)
) (

TEi (ρ) − TEi (σ)
)†
]
.

Thus,

D(TE j(ρ), TE j(σ))2 = D(ρ, σ)2 − 2
Tr[(ρ− σ)Ei] Tr[(ρ− σ)Ei]

Tr(E2
i )

+
(Tr[(ρ− σ)Ei])2 Tr(E2

i )
(
Tr(E2

i )
)2

= D(ρ, σ)2 − (Tr[(ρ− σ)Ei])2

Tr(E2
i )

, (A4)

where D(ρ, σ)2 = Tr
[
(ρ− σ)(ρ− σ)†

]
. Therefore, D(TE j(ρ), TE j(σ)) ! D(ρ, σ) and item

(c) holds. #

Theorem 3.1. Let A1, . . . , A$ be a set of informationally complete POVMs acting on a
Hilbert space Hd, associated to a compatible set of probability distributions "p1, . . . , "p$.
Therefore, algorithm 1 converges to the unique solution to the quantum state tomography
problem.

Proof. First, from item (a) in proposition 2.1 the generator state ρgen is a !xed point of each
imposition operator TAi , for every chosen POVM measurement A1, . . . , A$. Hence, ρgen is a
!xed point of the composition of all involved operators. Moreover, this !xed point is unique,
as there is no other quantum state having the same probability distributions for the considered
measurements, as A1, . . . , A$ are informationally complete. Here, we are assuming error-free
probability distributions. Finally, convergenceof our sequences is guaranteed by the alternating
projections method developed by Halperin, which states that successive iterations of non-
expansive projections converge to a common !xed point of the involved maps, see theorem 1
in [40]. #

A.2. Single-step convergence

Proposition 3.1. Let TA and TB be physical imposition operators associated to two mutually
unbiased bases A and B, for n qudit systems. Therefore

TA ◦ TB = TA + TB − I. (A5)

In particular, notice that TA and TB commute.

Proof. First, it is simple to show that TA(ρ) = ρ0 +
∑mA−1

j=0 Π j(ρ− ρ0)Π j for any PVM A,
where Π j = E j are the subnormalized rank-one PVM elements. Thus, we have

12
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TB ◦ TA(ρ0) = ρ0 +
mA−1∑

j=0

ΠA
j (ρ− ρ0)ΠA

j

+
mB−1∑

k=0

ΠB
k



ρ−



ρ0 +
mA−1∑

j=0

ΠA
j (ρ− ρ0)ΠA

j







ΠB
k

= ρ0 +
mA−1∑

j=0

ΠA
j (ρ− ρ0)ΠA

j +
mB−1∑

k=0

ΠB
k (ρ− ρ0)ΠB

k +
∑

j,k

ΠB
kΠ

A
j (ρ− ρ0)ΠA

j Π
B
k

On the other hand,
∑

j,k

ΠB
kΠ

A
j (ρ− ρ0)ΠA

j Π
B
k =

∑

j,k

Tr(ΠA
j Π

B
k ) Tr

(
(ρ− ρ0)ΠA

j

)
ΠB

k

= γ(A, B)
∑

j,k

Tr
(
(ρ− ρ0)ΠA

j

)
ΠB

k

= γ(A, B) Tr(ρ− ρ0)

= 0.

Therefore, we have

TB ◦ TA(ρ0) = ρ0 +
mA−1∑

j=0

ΠA
j (ρ− ρ0)ΠA

j +
mB−1∑

k=0

ΠB
k (ρ− ρ0)ΠB

k (A6)

= TA(ρ0) + TB(ρ0) − ρ0, (A7)

for any initial state ρ0. So, we have TB ◦ TA = TA ◦ TB = TA + TB − I. #
Proposition 3.2. Algorithm 1 converges in a single iteration to the unique solution of the
quantum state tomography problem for product of generalized Pauli operators and also for
d + 1 MUBs, in any prime power dimension d.

Proof. For generalized Pauli operators, commutativity of imposition operators comes from
orthogonality condition Tr(EiE j), see item (b) in proposition 2.1. Thus, we have

ρn = (TEd2 ◦ . . . ◦ TE1 )n(ρ0)

= Tn
Ed2

◦ . . . ◦ Tn
E1

(ρ0)

= TEd2 ◦ . . . ◦ TE1 (ρ0), (A8)

where the second step considers commutativity and the last step the fact that every
T j, j = 1, . . . , d + 1 is a projection. On the other hand, from theorem 3.1 we know that
ρn → ρgen when n →∞, for any generator state ρgen. From combining this result with (A8)
we have

TEd2 ◦ . . . ◦ TE1 (ρ0) = ρgen, (A9)

for any seed ρ0 and any generator state ρgen, in any prime power dimension d.
For MUB the result holds in the same way, where commutativity between the associated

imposition operators associated to every PVM arises from see proposition 3.1. #
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Figure 6. A new error model for the measurement process, which considers a Gaussian
perturbation of the spin direction to be measured together with !nite statistics errors.
Fidelity is averaged over 100 trials, having a randomly chosen generator state ρgen each.
Measurement statistics are estimated from 200 identical copies of the target state, where
we consider eigenbases of spin 1/2 observables in three orthogonal directions.

Appendix B. An additional model of errors for the measurement process

Along the work, we implemented simulations considering errors in both state preparation
and those arising from !nite statistics. In this section, we consider an additional source of
errors in the measurement process. Speci!cally, we consider errors in the measurement appa-
ratus, which is modeled by adding Gaussian perturbations in the direction of spin observables.
In !gure 6, we show !delity for quantum state reconstruction for a spin 1/2 particle from
three spin observables along orthogonal directions. For the Gaussian noise model, such direc-
tions are affected by a Gaussian probability distribution having standard deviation ν, centered
in the ideally expected direction. That is, we consider the Gaussian probability distribution
p(x) ∝ e−(x−µ)2/2ν2

with µ = 0, for entries of a spin direction n, associated to the observable
S = "n · "σ, where "σ = (σx , σy, σz) is a vector composed by the three Pauli matrices. The
amplitude of "uctuations can be controlled by adjusting the standard deviation ν.
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