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We present a method that allows the study of classical and quantum correlations in networks with
causally independent parties, such as the scenario underlying entanglement swapping. By imposing
relaxations of factorization constraints in a form compatible with semidefinite programing, it enables the
use of the Navascués-Pironio-Acín hierarchy in complex quantum networks. We first show how the
technique successfully identifies correlations not attainable in the entanglement-swapping scenario.
Then we use it to show how the nonlocal power of measurements can be activated in a network: there
exist measuring devices that, despite being unable to generate nonlocal correlations in the standard Bell
scenario, provide a classical-quantum separation in an entanglement swapping configuration.
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Quantum correlations are at the core of quantum infor-
mation science [1,2]. As proven by the violation of Bell
inequalities [3], quantum theory is nonlocal, in the sense
that there exist correlations between outcomes of measure-
ments performed on distant entangled quantum systems
that are incompatible with any explanation involving just
local hidden variables (LHV). Quantum nonlocality is a
powerful resource that grounds protocols for secure cryp-
tography [4–6], randomness certification [7,8], self-testing
[9], or distributed computing [10]. Therefore, it is crucial
to develop ways to test the incompatibility of a given
correlation with LHV models, that is, to detect whether
the correlation contains some nonlocal features that can be
harnessed.
Nowadays, fast progress towards advanced demonstra-

tions of quantum communication networks require to go
beyond the two-party scenario and characterize networks
of growing complexity, providing the tools to witness the
nonclassicality of quantum correlations. To that aim, the
framework of causal networks [11] and its quantum
generalizations [12–18] have played an insightful role.
Causal networks not only allow us to derive Bell’s theorem
from a causal inference perspective [19,20] but also provide
generalizations to more complex scenarios such as quantum

networks with several sources [12,21–23] or involving
communication among the parties [24–26].
Despite all recent advances, the understanding of the

structure of correlations in networks remains very limited.
The most general method to characterize classical network
correlations relies on algebraic geometry [27] that, in
practice, is limited to very simple cases. Motivated by
that, alternative methods have been proposed that either
are limited to very specific networks [22,23], or do not have
a clear path for a quantum generalization [21,28–30].
An important recent advance is the development of the
inflation technique [29,31], which allows for the charac-
terization of classical and general, nonsignaling network
correlations. Obtaining an analogous method to discrimi-
nate between quantum and supraquantum correlations is a
subject of current research [32], but to date, the only known
method for quantum correlations, the Navascués-Pironio-
Acín (NPA) hierarchy [33,34], applies solely to networks
akin to a Bell scenario.
In this Letter, we propose a technique to impose

relaxations of factorization constraints in semidefinite
programs. When used in the framework of causality, it
allows identifying correlations incompatible with causal
explanations where some of the observed variables are
independent. The resulting method can be applied to any
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quantum network with parties that are causally indepen-
dent, and can also be easily adapted to classical network
correlations by incorporating extra conditions associated
to measurement commutativity [35]. We first show that
our proposal accurately identifies supraquantum correla-
tions in the entanglement-swapping network. Then, we use
it to demonstrate that the nonlocality of measurements
can be activated: we find measurement operators that,
albeit unable to give rise to nonlocal correlations in a
Bell scenario, can produce correlations with no classical
analog when implemented in an entanglement-swapping
configuration.
Compatibility with causal hypotheses.—A natural tool

used for reasoning about correlations in network scenarios
is Bayesian networks [11,12]. These are directed acyclic
graphs (DAGs) that encode hypotheses on the causal
structure underlying the correlations observed among
different variables. In Bayesian networks, nodes represent
random variables and directed edges represent causal
relations: the variable at the origin influences the value
of the variable in the head. The network may include
hidden latent variables that could also be necessary to
explain the observed correlations.
Typical experiments in quantum information, such as a

Bell test or entanglement swapping, can easily be repre-
sented in this language. Sources preparing states, which
are not directly empirically observable, are represented by
latent variables, while measurement choices and outputs
define the observed variables, as represented in Fig. 1.
A network provides a classical-quantum separation when-
ever there exist quantum sources producing correlations
among the observed variables that are impossible to attain

by classical means in the same network. The scenario
underlying a Bell test is an example of such a network, but
it is not the only one [12,13,22–25,36].
Assessing whether a given correlation is compatible with

a causal network with latent variables is hard. Even though
in the classical case some general recipes are known
[21,27–30], they cannot be easily generalized for quantum
correlations. For instance, while the inflation technique
[29,31] can identify if a correlation is nonclassical, it cannot
discern whether its origin is quantum or supraquantum.
Only for Bell-type networks, where measurements are
applied on different shares of a single multipartite quantum
state, can the NPA hierarchy [33,34] be used to discard a
quantum origin of the correlations.
The NPA hierarchy works under the following

observation: assume a multipartite probability distribution
pða; b;…jx; y;…Þ has a quantum realization, so there
exists a quantum state ρ and measurement operators
fΠq

ojigi;o for q ¼ A; B;…, such that pða; b;…jx; y;…Þ ¼
TrðρΠA

ajx ⊗ ΠB
bjy ⊗ …Þ. For every set of products of any size

of the measurement operators, S ¼ fS1;…; Sng, the
moment matrix Γ whose matrix elements are given by

Γi;j ¼ TrðρS†i SjÞ Si; Sj ∈ S ð1Þ

is positive semidefinite. To test whether a given probability
distribution admits a quantum realization, one chooses a
set S, builds a moment matrix of the form (1), where some
entries will be computable from the distribution while the
rest remain as variables, and looks for a variable assign-
ment that makes it positive semidefinite. Finding a set S
for which the associated Γ cannot be made positive-
semidefinite signals the distribution as not compatible
with a quantum origin. This type of reasoning also leads
to a well-known tool for entanglement detection in con-
tinuous variables [37].
In the case of multipartite Bell scenarios, several linear

constraints between the matrix entries of Γ arise due to the
properties of quantum measurements, so one can use semi-
definite programing to check the existence of a variable
assignment that makes Γ positive semidefinite. This is not
the case in general multipartite scenarios with multiple
sources (states) because the network conditions may give
rise to nonlinear constraints that cannot be imposed to the
semidefinite programs.
For illustration, consider the line scenario, a generali-

zation of the Bell scenario underlying quantum repeaters
where parties are arranged in a line and two consecutive
parties are linked together by a latent variable. The simplest
of these instances corresponds to an entanglement swap-
ping experiment involving three parties, as represented in
Fig. 1. Correlations compatible with this scenario are such
that the marginal distributions resulting after discarding any
nonextremal party factorize,

FIG. 1. The tripartite line scenario in (top) quantum information
and (bottom) causal network representations. The encircled
subgraph represents the DAG underlying the bipartite Bell
scenario. Triangular nodes represent observable variables, while
round nodes represent latent variables. Note that the extreme
parties A and C are causally disconnected, so when the central
party B is omitted, correlation functions factorize.
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X

ok

pðo1;…; ok;…; onji1;…; ik;…; inÞ

¼ pðo1;…; ok−1ji1;…; ik−1Þpðokþ1;…; onjikþ1;…; inÞ;
ð2Þ

where ik and ok denote the input and output variable for
party k. While illustrated here for the line, these independ-
ence constraints apply to many networks. They are non-
linear and nonconvex, and thus cannot be imposed in
semidefinite programs. In the following we propose a
method to partially overcome this limitation by imposing
semidefinite-program-compatible relaxations of conditions
of the type of Eq. (2).
Convex relaxation of independence relations.—In order

to deal with independence relations in semidefinite pro-
graming, we propose performing a scalar extension of
the moment matrices involved in the NPA hierarchy: given
a set of products of measurement operators, S, which
produces a specific moment matrix Γ, we complement it
with extra operators of the form SihSji; SihSjihSki;…,
where Si; Sj; Sk;… are products of operators not neces-
sarily belonging to the original set S.
The additional generating operators give rise to matrix

elements that represent factorized quantities, which can
then be related via equality constraints to elements in the
original moment matrix that should factorize. In the same
spirit as the original NPA hierarchy, some of the matrix
elements in Γ̃ can be computed from the given probability
distribution, the rest remaining as variables, and if the
probability distribution is compatible with the causal
scenario then there exists a variable assignment such that
Γ̃≽0.
Since Γ is a principal submatrix of Γ̃, the positivity of the

latter implies the positivity of the former. If we cannot find
a positive-semidefinite completion of Γ̃, it follows that
the correlation under scrutiny is not compatible with the
proposed causal explanation. If, furthermore, we cannot
find a non-negative completion for Γ, the correlation cannot
be generated even by conducting measurements on a global
quantum state.
To illustrate the method let us consider the tripartite line

scenario of Fig. 1. Because of the network geometry, all
entries in the moment matrix generated by operator strings
that only contain operators of the extreme parties A and C
factorize. Consider the moment matrix generated by the
extended set of operators f1; A0A1; C0C1; hA0A1i1g,

Γ̃ ¼
1

ðA0A1Þ†
ðC0C1Þ†
hA0A1i�1

1 A0A1 C0C1 hA0A1i10
BBB@

1 v1 v2 v3
1 v4 v5

1 v6
v7

1
CCCA

; ð3Þ

where the lower triangle has been omitted since Γ̃ is
Hermitian and we assume that every operator satisfies
O†O ¼ 1. The insertion of the extra column labeled by
the operator hA0A1i1, which is an operator equal to the
identity times the unknown scalar factor hA0A1i, gives
rise to a number of equality constraints that relate elements
in the top-left 3 × 3 submatrix (which is the corresponding
Γ) with elements in the last column. These identifi-
cations are v1 ¼ v3, v5 ¼ v7, and v4 ¼ v�6. The latter is
actually that which imposes the independence constraint
hA0A1C0C1i ¼ hA0A1ihC0C1i, a causal constraint implied
by the tripartite-line structure.
We note that additional constraints can be imposed in Γ̃,

namely v4 ¼ v�1v2 (also arising from the causal structure)
and v5 ¼ jv1j2. These constraints are nonlinear and will
not be enforced in our method, since we wish to keep it
solvable via semidefinite programing. Furthermore, as
shown below, they are not necessarily required for provid-
ing useful information about correlations in networks.
The independence constraints exploited in scalar exten-

sion apply both to classical and quantum networks. In the
classical case it is possible to incorporate additional linear
constraints to the moment matrix that account for the fact
that in classical theory all measurement operators, includ-
ing those performed by the same party, commute. This
creates a hierarchy over relaxations of the set of classical
correlations, which has been used in the context of
entanglement detection in Ref. [35]. Therefore, the method
can be employed to study both classical and quantum
correlations in networks.
Identifying supraquantum correlations.—Simple scalar

extensions allow recovering the results of Ref. [23]. The
tripartite line scenario of Fig. 1 underlies the entanglement
swapping protocol. Being the simplest quantum network
beyond Bell, it has received considerable attention [21–23].
Nonlinear Bell-like inequalities have been obtained to
discern in a device-independent manner whether correla-
tions observed in tripartite scenarios are compatible or not
with bilocal hidden variable models of the form

pða;b;cjx;y;zÞ¼
Z

Λ1

dλ1

Z

Λ2

dλ2pðλ1Þpðλ2Þ

×pðajx;λ1Þpðbjy;λ1;λ2Þpðcjz;λ2Þ: ð4Þ
In fact, similar queries can be done on whether a

particular distribution can have a biquantum model, i.e.,
if it can be written in the form

pða;b;cjx;y;zÞ¼TrðΠA
ajx⊗ΠB1B2

bjy ⊗ΠC
cjzρAB1

⊗ρB2C
Þ: ð5Þ

As an example of use of the scalar extension technique,
we recover two known results about the entanglement
swapping configuration where each party has a binary
input and output, x, y, z, a, b, c ¼ 0, 1. Consider the one-
parameter family of correlations
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Pv ¼ vP22 þ ð1 − vÞP0;

where 0≤v≤1, P0 is a noise term P0ða; b; cjx; y; zÞ ¼ 1=8
for all inputs and outputs, and P22 is [23]

P22ða; b; cjx; y; zÞ ¼ 1

8
½1þ ð−1Þaþbþcþxyþyz�:

This distribution fails to have a biquantum model for
any v > 1=2, and a bilocal hidden variable model for any
v > 1=4. Using the scalar extension construction we are
able to reproduce these results. The explicit calculations
performed in this section are shown in the Computational
Appendix, which can be found in [38].
For comparing against biquantum models, we consider

an extension of the NPA level S3 [34] with a minimal set
of operators needed to impose constraints on all elements
in the moment matrix that should factorize. This minimal
set has the form fhS1i1;…; hSni1g, where Si is any
combination of operators of party A of length 2 ≤ l ≤ 5.
We generate the necessary moment matrices Γ̃ with
NCPOL2SDPA [39], and optimize their smallest eigenvalues
using MOSEK [40], SEDUMI [41] and SDPT3 [42]. For
visibilities v > 1=2 the optimal smallest eigenvalues found
are negative [43]. This renders the family of distributions
Pv>1=2 incompatible with biquantum models. For v ¼ 1=2
the distribution is equal to P1=2 ¼ P22

Q , defined in Ref. [23],
which is known to have a quantum realization.
In order to comparePv against bilocal models, we impose

the additional constraint that operators representing different
measurements of a same party commute [35]. Using the
corresponding generating set S3, in this case an extension
with the single operator hA0A1i1 suffices to discard the
existence of a bilocal model of the correlations whenever
the visibility satisfies v > 1=4. This is the same result than
that shown in Ref. [23] for noisy versions of the quantum
distribution P22

Q ðVÞ, since Pv¼1=4 ¼ P22
Q ðV ¼ 1=2Þ. When

v ≤ 1=4, the distribution is known to have a bilocal model.
Nonlocality of measurement activation.—In the follow-

ing we use scalar extension to demonstrate how the
nonlocal power of measurement devices can be activated
in a network structure: measurements that do not lead to
nonlocal correlations in the standard Bell scenario, do it
when arranged in a network. Similar effects are known for
quantum states [44].
Consider a scenario in which one has access to three

measuring devices. One implements a single four-output
measurement. The remaining two devices each implement
two measurements of binary outputs with limited detection
efficiency: for all measurements there is a probability 1 − η
that a third (lossy) outcome is observed. We denote by
η1 and η2 these efficiencies. What are their values so that
nonlocal correlations can be certified with these three
devices acting on a quantum state? Since one of the devices
implements only one measurement, the only possibility is

to run a standard bipartite Bell test with the other two,
possibly conditioned on one of the measurement outputs of
the first. Critical values for the detection efficiencies such
that no nonlocal correlations can be observed with two-
output measurements can be obtained from Ref. [45]: in
case one device is perfect, say η1 ¼ 1, it is impossible to
observe nonlocal correlations whenever η2 < 1=2; if both
devices have the same efficiency, a local model for the
correlations always exists if η1 ¼ η2 ≤ 2=3.
We now arrange these devices in a tripartite-line scenario

and make use of scalar extension to determine detection
efficiencies for which nonclassical correlations can be
observed in the network. In particular, we focus on the
case where the sources send partially entangled states
jθiji ¼ cos θijj00i þ sin θijj11i, the measurement device
of party B makes a perfect, four-outcome Bell state meas-
urement in the standard basis fjϕþi; jϕ−i; jψþi; jψ−ig, and
the measurements performed by parties A and C have the
form [46]:

A0 ¼ cosα0Z − sinα0X; C0 ¼ cos α0Z þ sinα0X;

A1 ¼ cosα1Z þ sin α1X; C1 ¼ cosα1Z − sinα1X:

With probability 1 − ηi, party i ∈ fA; Cg produces a
third, “measurement failed” result. We are interested in
knowing how inefficient the measurement devices of the
extreme parties A and C can be and still be able to produce
correlations that cannot be explained by a bilocal hidden
variable model of the type (4). The results are shown in
Table I, where we also vary the entanglement of the
prepared pure states. All results have been achieved with
the generating operator set corresponding to the (commut-
ing) NPA level S3, extended with the set of four operators
fhΠC

c1j0Π
C
c2j1i1∶c1; c2 ∈ f0; 1gg, where ΠC

oji is the projector
on the outcome o of the ith measurement of party C.
When party A’s measurement device is perfect (the case

in the two first rows of Table I), the observed three-party
correlations do not have bilocal models even in cases when
party C detects as few as 0.001% of all the particles that

TABLE I. Upper bounds to the smallest detection efficiency
and entanglement needed to generate nonbilocal correlations in
the tripartite-line scenario. The values on the second and third
columns ðηmin; θminÞ are not related, so in general one needs
θ > θmin to be able to discard bilocal models with η ¼ ηmin and
vice versa. The last column shows an example of small combined
values of the parameters for which nonbilocal correlations can
be generated.

Assumptions ηmin θmin ðη; θÞex
ηA ¼ 1, θAB ¼ π=4 <10−5 <10−4 (0.0001, 0.1250)
ηA ¼ 1, θAB ¼ θBC <10−5 <10−4 (0.0444, 0.1000)
ηA ¼ ηC, θAB ¼ π=4 0.6085 0.0010 (0.6389, 0.6545)
ηA ¼ ηC, θAB ¼ θBC 0.5291 0.0070 (0.5626, 0.1751)
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receives. This value is well below 50%, the critical value
needed for certifying standard nonlocality. In fact, we
believe that nonclassical correlations can be observed for
all ηC > 0 and the obtained critical value is a consequence
of numerical issues when the detection efficiency is very
low. We also observe that very low entanglement is needed
to create nonbilocal correlations. This last finding is similar
to results known for bipartite Bell scenarios [47].
In the case of two inefficient devices, if we fix the

state prepared by the source between parties A and B to
be maximally entangled, nonbilocal correlations can
be established for any detection efficiency higher than
ηmin ¼ 0.6085. Nonbilocal correlations at ηmin are gener-
ated when θBC ¼ π=4 (so the source between parties B
and C also distributes maximally entangled states), and
the measurements performed are Ax¼½Z−ð−1ÞxX�= ffiffiffi

2
p

,
Cz ¼ ½Z þ ð−1ÞzX�= ffiffiffi

2
p

. For higher detection efficiencies,
nonbilocal correlations can be generated with decreasing
amounts of entanglement and measurements whose aper-
ture (the relative angle jα1 − α0j) decreases, suggesting that
this is the optimal configuration for detecting nonbilocality
in a loss-resistant manner.
Varying also the entanglement in θAB, correlations with-

out bilocal models can be certified for efficiencies above
ηmin ¼ 0.5291, again well below 2=3, the value necessary
for certifying standard Bell nonlocality. It is then a relevant
question to ask whether the value of ηmin can be further
lowered by adding more copies of the source either in
an n-partite line or an n-star scenario, which we leave for
future work.
Conclusions.—Technological advances have been

allowing us to distribute information encoded in quantum
systems in increasingly complex network structures in the
recent years. With the aim of testing the hypothesis that an
observed multipartite correlation has been generated in a
particular quantum network, we have introduced a scalar
extension of the NPA hierarchy that imposes relaxations of
the independence constraints between causally independent
nodes in a network scenario. The method can also be
applied to classical correlations by introducing some extra
constraints associated to the commutativity of all measure-
ments, including those of the sameobserver.Wehave applied
this method to the study of correlations in the tripartite-
line scenario, showing that correlations not explainable
by bilocal hidden variable models can be established
between the parties even in the case of very low detection
efficiencies—at least as low as 0.001%. The results imply
that it is possible to activate the nonlocal properties of
measurement devices by arranging them in a network
geometry. This has a clear impact on the deployment of
state-of-the-art and near-future experimental quantum net-
works, as it lowers the requirements for certification of
nonclassical correlations.
It is a natural open problem to study whether the

obtained hierarchy converges. It is also relevant to analyze

how these results could be used to construct quantum
information protocols. In particular, understanding how to
extend the results to line scenarios with more nodes could
be of relevance for the observation of nonclassical corre-
lations in repeater networks. A similar extension can be
proposed for the entanglement criteria based on various
moments of continuous variables’ quadratures [37], pos-
sibly leading to novel methods of multipartite entanglement
detection.
In its core, scalar extension imposes factorization

constraints in semidefinite programs, and its application
to correlations in networks comes at a later stage.
Semidefinite programing for polynomial optimization is
ubiquitous in many fields of research and engineering, and,
thus, the application of scalar extension in other fields
represents a promising new avenue of research.
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