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Abstract
We analyze the information an attacker can obtain on the numbers generated by a user by
measurements on a subsystem of a system consisting of two entangled two-level systems. The
attacker and the user make measurements on their respective subsystems, only. Already the
knowledge of the density matrix of the subsystem of the user completely determines the upper
bound on the information accessible to the attacker. We compare and contrast this information to
the appropriate bounds provided by quantum state discrimination.

1. Introduction

Random numbers have wide applications [1], ranging from Monte Carlo simulations [2] via lotteries and
gambling to classical and quantum cryptography protocols [3–6]. For most of these tasks, the privacy of the
generated numbers, that is the condition that the random numbers are neither predictable by any model,
nor that an attacker can obtain information that allows him to at least partially predict them, plays a crucial
role.

A quantum random number generator (QNRG) offers at least theoretically the possibility to create such
unpredictable random numbers [7, 8], due to the physical nature of their generation process and the
inherent indeterminism of quantum theory. Typical examples of QRNG implementations are photons on a
beam splitter [9], homodyne measurements of the vacuum [10], or laser phase noise [11].

However, real life implementations of QRNG usually suffer from imperfections that open the door for
an attacker to get at least partial information about the generated numbers. In this article, we employ an
elementary two-qubit model for such a non-ideal QRNG to determine how much information an attacker
can maximally gain by exploiting the imperfections of a QRNG.

In order to implement our model experimentally, two conditions have to be fulfilled: (i) the control and
entanglement of two qubit systems, and (ii) the tomography of both qubits. Fortunately, both requirements
can be achieved readily. Over the past years, a wide range of experiments controlling and measuring
two-qubit systems have been realized, ranging from superconducting qubits [12], over trapped ions [13, 14]
and Rydberg atoms [15], to entangled photons [16]. Tomography has also been demonstrated for different
systems [17, 18].

1.1. Formulation of problem
Throughout our article we follow an operational approach toward quantum mechanics à la Lamb [19]. We
consider a QRNG with an imperfect source from which an attacker can obtain information. In particular,
we make a model which includes the state that is prepared, and the measurements which are performed.
Based on this model we then calculate all the relevant quantities.

Figure 1 depicts our QRNG model consisting of a single qubit system A, that is prepared in a quantum
state �̂A. The user performs projective measurements in the direction of the unit vector eA on the Bloch

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/abac73
https://creativecommons.org/licenses/by/4.0/
mailto:johannes.seiler@uni-ulm.de


New J. Phys. 22 (2020) 093063 J Seiler et al

Figure 1. Model of a quantum random number generator based on two entangled qubit systems and viewed from the user
(a) and the attacker (b). (a) The user sees a mixed state �̂A and makes a projective measurement yielding a random bit a. (b) The
attacker deals with the complete system A + B in which the mixed state �̂A is purified to |Ψ〉. The user still performs a
measurement on �̂A to obtain the bit a, while the attacker carries out a measurement on �̂B to receive a bit b. The question is:
How much information about a can the attacker obtain from his result b?

sphere of the system A. To each of the two possible outcomes he assigns a bit value a, with a = 0 or a = 1.
We denote the probability that the user obtains the bit value a for the measurement direction eA by WeA (a).

Since the user wants to maximize the entropy, his measurement is chosen in a way, that the
measurement outcomes, and thus the assigned bit values, have equal probability. In the ideal case, the state
�̂A would be a pure state, but due to imperfections it is in general assumed to be a mixed state. By extending
the system with a qubit environment B, we can purify �̂A to a pure state |Ψ〉 in the system A + B.

In the worst case, an attacker, who wants to gain as much knowledge about the generated random
numbers as possible, knows or might even have prepared the complete state |Ψ〉. The attacker is also aware
of the user’s measurement, and can perform a projective measurement on the subsystem B. We denote the
measurement direction by the unit vector eB on the Bloch sphere of the subsystem B. This measurement
yields a bit value outcome b with probability WeB (b), where b = 0 or b = 1.

We note that for a practical QRNG the experiment has to be performed many times, since every run
only provides us with a single bit of information. Moreover, we make the assumption that the state and the
measurements are identical in every run. Under this condition, the Born rule guarantees that in our model
the measured bit values are independent and identically distributed. By performing an appropriate
measurement, the user can obtain a uniform distribution of his bits.

The question the user has to ask then is: How much information can the attacker gain from his own
measurement result b about the user’s random bit a?

In order to quantify this information, we use the mutual information, which reflects the amount of
information the attacker will gain on average from his measurement result b about the user’s measurement
result a. It is therefore closely related to the conditional Shannon entropy, which quantifies the average
uncertainty of the user’s bit a, depending on the attacker’s bit b. In fact, if the user’s bits are obtained from
a uniform distribution, the mutual information is complementary to the conditional Shannon entropy.

We note that in similar models [20–28] the conditional min-entropy Hmin(X|E) [29] has often been
used, which quantifies the uncertainty the attacker has about the user’s bit value a, when he guesses the
most likely measurement outcome considering his own measurement result b. In contrast to the conditional
Shannon entropy, the conditional min-entropy only considers the most probable result, while less probable
results are neglected, and is thus always lower than the conditional entropy.

We furthermore note that in order to perform adequate post-processing of the raw bit string, one is
usually interested in the min-entropy of the complete sequence of n bits, and not only of a single
measurement outcome. For our ORNG model we assume that all bits are obtained from the same
distribution and are independent of each other. In the asymptotic limit of infinitely many bits, the most
probable bit string is a sequence which contains the bits distributed according to the probability
distribution, and not only the most probable bit in every instance. The min-entropy of the complete
sequence of n bits therefore converges to n times the conditional Shannon entropy in this asymptotic limit.
Hence, the asymptotic limit of the conditional min-entropy can also be derived from the mutual
information we calculate in this paper.

1.2. Discussion of the literature
The question raised in this article of how private the random numbers generated in a non-ideal QRNG are,
is of course not completely new. There already exist different approaches [20–28] that allow to estimate the
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unpredictability of the ‘raw’ random numbers generated in a non-ideal QRNG. All strategies have in
common that one tries to find a lower bound to the min-entropy of a long sequence of raw random
numbers. This quantity is then used by a randomness extractor to produce a shorter, but unpredictable
sequence of ‘perfect’ random numbers [30–32].

One approach is to model the setup and its imperfections, and then calculate the min-entropy from this
model [20, 21]. However, in many cases this is quite a difficult task, and one has to make sure that the
model is a good description of the experimental implementation.

Our approach is very much in the line of reference [20] but much more specific. In comparison to the
latter paper, we discuss how much information an attacker can get, and how this information depends on
the measured quantum state and the chosen measurements. This approach gives us the possibility to show
how the attacker can gain information, and how the user of the QRNG can protect himself against it.

Semi-device-independent QRNGs [22–25], in which states are prepared and measured in random bases
in order to make Bell-like tests on the raw data represent a different approach. Here, the violation of certain
(in-)equalities, for example Bell inequalities [33], of these data then certifies the non-classicality of the
physical process, and determines a lower bound on the min-entropy. This procedure has the advantage that
one does not need a specific model of the QRNG, while only certain weaker assumptions on the preparation
and/or the measurement devices have to be fulfilled.

Source-independent QRNGs relax the conditions of semi-device-independent QRNGs to the extent, that
the user trusts the measurement but not the state preparation. These assumptions are reasonable when the
user experimentally fully controls the measurement device, but not the preparation devices of the state.
Source-independent QRNGs have already been studied for both, discrete systems [26, 27], and continuous
systems, like homodyne measurements of the vacuum [28].

In these cases the randomness relevant for the privacy question of a QRNG originates from the fact that
the state is not in an eigenstate or a mixture of eigenstates of the measurement operator. In order to
guarantee this condition and therefore the randomness a measurement in at least one complementary basis
has to be performed at random instances. From the measurement results in the complementary basis a
lower bound on the min-entropy can then be deduced [26–28].

The resource theory of quantum coherence [34] plays an essential role in the determination of these
boundaries. In these considerations the quantum coherence of a state in a given basis is quantified by an
abstract measure in terms of the distance of the state from the set of incoherent states in that basis. It has
been demonstrated [35] that the maximal randomness, which can be obtained from a state represented in a
basis complementary to the measurement basis, can be connected to a coherence measure.

The question which coherence measure one has to use in order to describe the extractable randomness,
depends on the measure quantifying the randomness and the model of the attacker. In fact, in reference
[36] two different coherence measures are needed for a ‘classical’ and a ‘quantum’ Eve, that is two different
types of attackers. The latter case considers a scenario where Eve does not perform measurements on her
subsystem, and the randomness is quantified by entropy of her subsystem. In the ‘classical’ Eve case, the
attacker also performs measurements on her subsystem, and is therefore quite similar to our scheme.

In our article we also follow a source-independent approach, since we only consider imperfect sources,
but perfect measurements. However, we suspect that our model might also be suitable for the description of
imperfect measurements.

In contrast to references [26–28, 35, 36], we do not use the abstract concept of coherence measures, but
follow an operational approach to model the QRNG. For a given state of the two-qubit system and the
measurements of both the user and the attacker, we first calculate the resulting probability distributions
from this model. Then we maximize the information the attacker can gain over all of his possible strategies.
Our calculations therefore directly show the setting the attacker has to choose in order to maximize the
mutual information. Moreover, it provides us with the dependence of the mutual information on the
strategy of the attacker.

In contrast, coherence measures only provide us with the minimal randomness of the system, but
cannot reveal the attacker’s measurement strategy. Thus, our results can easily be adopted to cases, where
restrictions on the attacker’s measurement strategy are applied.

1.3. Outline
Our article is organized as follows: in section 2, we consider the case of fixed projective measurement
directions in both the system and the environment, and derive a general expression for the mutual
information. We then focus in section 3 on the case of a QRNG, where the user selects his measurement in
such a way that the bit a is uniformly distributed, and obtain the maximal information any attacker can
gain. Finally, in section 4 we conclude by summarizing our results and providing a short outlook.
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In order to keep our article self-contained while focused on the essential ideas we have included
additional material and extensive calculations in four appendices. In appendices A and B we evaluate
explicitly the correlation matrix and the constraints on three parameters that fully define the mutual
information. Moreover, we dedicate appendix C to a detailed derivation of the maximal mutual
information. Appendix D is devoted to extending the user’s measurement strategy.

2. Mutual information for projective measurements

In this section we derive a general expression for the mutual information in our QRNG model for the case,
when only projective measurements are performed on both A and B. We discuss the dependence of the
mutual information on the entanglement of the two qubit subsystems as well as on the measurement
directions. The results provided in this section will serve as the foundation of our analysis of the worst case
presented in section 3.

2.1. Mutual information and entanglement
We quantify the information the attacker can gain from his bit value b about the user’s bit value a using the
mutual information [4, 37, 38]

I(eA, eB, |Ψ〉) =
1∑

a,b=0

WeA ,eB (a, b)log2

(
WeA ,eB (a, b)

WeA (a)WeB (b)

)
, (1)

that a measurement on the system B can provide about the measurement outcome in the system A, and vice
versa. Here, WeA,eB(a, b) is the joint probability of getting the measurement results a and b when performing
a measurement eA on A and eB on B.

We note, that for a separable state |Ψs〉, the measurement results in both subsystems are independent of
each other, that is the joint probability is given by the product

WeA,eB (a, b) = WeA (a)WeB (b) (2)

of the marginals for all combinations of measurement results a and b, and the logarithm and hence the
mutual information both vanish, that is

I(eA, eB, |Ψs〉) = 0. (3)

In order to achieve a non-vanishing mutual information, the two subsystems A and B must be
entangled. Indeed, we shall show that the entanglement between the two subsystems plays a crucial role for
the mutual information.

We gain a deeper insight into the role of the entanglement by noting from equation (1) that the mutual
information depends only on the measurement probabilities, which result from the measurement operators
of the user and the attacker as well as from the state of the complete system.

Since, we want to model a quantum random number generator, the user chooses the measurement such
that a uniform distribution arises. The user’s measurement is therefore fixed with respect to the state of the
subsystem of the user. The mutual information is then only dependent on the measurement of the attacker
and the state of the complete system.

To obtain the maximal mutual information, the attacker has to choose his measurement accordingly.
The requirements of a constant distribution for the user and the maximal mutual information for the
attacker reduce the number of degrees of freedom and the mutual information can only depend on the
entanglement of the two subsystems.

2.2. States of system and subsystems
We start from the pure two-qubit state

|Ψ〉 ≡
1∑

i=0

1∑
j=0

Ψij|i〉A|j〉B, (4)

representing the state of the combined system of A and B by complex coefficients Ψij, which can be
interpreted as the elements of a 2 × 2 matrix Ψ. We quantify the entanglement between the two subsystems
of the state |Ψ〉 by the concurrence

C ≡ 2|detΨ|, (5)
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which can take values between zero, for |Ψ〉 being a separable state, and one, when |Ψ〉 is a maximally
entangled state.

When we trace out the subsystem B(A), we obtain the reduced density operator

�̂A(B) ≡ trB(A)

(
|Ψ〉 〈Ψ|

)
(6)

of the subsystem A(B), which can be written in the form

�̂A(B) =
1

2

(
�̂�+ aA(B) · σ̂A(B)

)
. (7)

Here, the vector aA(B) denotes the Bloch vector of the reduced subsystem �̂A(B), and σ̂A(B) is the vector of
Pauli matrices.

We note that for the two density operators �̂A and �̂B, which are derived from the same common pure
state |Ψ〉, the eigenvalues and thus the lengths of the respective Bloch vectors have to be the same [4], that is
|aA| = |aB|. These lengths are furthermore related to the concurrence, equation (5), by

C =
√

1 − |aA|2. (8)

Alternatively, we can relate these lengths to the purity

P ≡ tr(�̂2
A) =

1

2

(
1 + |aA|2

)
, (9)

of the density operator �̂A of the subsystem. From equation (8), we find the relation

P = 1 − 1

2
C2 (10)

between the purity and the concurrence.

2.3. Projective measurements and probabilities
So far we have concentrated on the state of the combined system. We now analyze measurements on the
subsystems.

For this purpose we assume that the user makes a projective measurement described by the projection
operators

Π̂eA (a) ≡ 1

2

(
�̂�+ (−1)aeA · σ̂A

)
(11)

while the attacker performs a projective measurement given by the operators

Π̂eB (b) ≡ 1

2

(
�̂�+ (−1)beB · σ̂B

)
, (12)

with a = 0, 1 and b = 0, 1.
The probability WeA (a) to find the bit a given that the user measures in the direction eA and the system

is in the state |Ψ〉 follows from the Born rule as

WeA (a) = 〈Ψ| Π̂eA (a) |Ψ〉 . (13)

Analogously, the probability WeB (b) to obtain b provided the attacker measures in the direction eB takes
the form

WeB (b) = 〈Ψ| Π̂eB (b) |Ψ〉 . (14)

By inserting equations (11) and (12) into equations (13) and (14) respectively, and exploiting
equations (6) and (7), we find the marginal probabilities

WeA (a) =
1

2
(1 + (−1)aeA · aA) , (15)

for the subsystem of the user, and

WeB (b) =
1

2

(
1 + (−1)beB · aB

)
, (16)

for the subsystem of the attacker.
The joint probability WeA ,eB (a, b) to find the values a and b, provided the measurements are in the

directions eA and eB, is given by

WeA,eB(a, b) ≡ 〈Ψ| Π̂eA (a) ⊗ Π̂eB(b) |Ψ〉 (17)
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and with the definitions of the projection operators, equations (11) and (12), this probability takes the form

WeA,eB (a, b) =
1

4

(
1 + (−1)aeA · aA + (−1)beB · aB + (−1)a+beT

AK̃eB

)
, (18)

where we have introduced the (3 × 3) matrix

K̃ ≡ 〈Ψ| σ̂A ⊗ σ̂B |Ψ〉 (19)

accounting for the correlation between the two subsystems.

2.4. Bias and correlation
So far, we have defined the state and the measurement operators for our two-qubit model. We are now in
the position to calculate the mutual information for a general pure two-qubit state |Ψ〉 and projective
measurements in both subsystems.

2.4.1. Definitions
Inserting the probabilities, equations (15), (16) and (18), back into the definition of the mutual
information, equation (1), we find

I =
1

4

∑
a,b

(
1 + (−1)aα+ (−1)bβ + (−1)a+bκ

)
log2

(
1 + (−1)aα+ (−1)bβ + (−1)a+bκ

(1 + (−1)aα)(1 + (−1)bβ)

)
, (20)

where we have introduced the three parameters

α ≡ eA · aA, β ≡ eB · aB, κ ≡ eT
AK̃eB. (21)

Here, α and β quantify the bias in the measurement outcome on the subsystem A and B, respectively, which
can be seen by comparing the definition of these parameters with the marginal probabilities equations (15)
and (16). Moreover, κ reflects the influence of the correlation between the two subsystems on the joint
measurement.

The three parameters are not independent of each other. The bias parameters α and β both depend on
the density operators of their respective subsystem, which are in general not independent, since both result
from a common entangled pure state. The parameter κ also depends on this pure state, as well as on the
measurement directions, which also enter in the bias parameters.

In the following we will derive a constraint on these three parameters. For this purpose, we first derive
an explicit expression for K̃

2.4.2. Constraints
A general state |Ψ〉, given by equation (4), can always be written in the form

|Ψ〉 =
√
λ1 |↑〉 |↑〉+

√
λ2 |↓〉 |↓〉 , (22)

due to the Schmidt decomposition [4], where we have introduced new basis sets {|↑〉 , |↓〉} in both
subsystems A and B. Note that in the state |↑〉 |↑〉, in general the spins do not have to point into the same
direction anymore.

In appendix A, we derive the expression

K̃ = diag(2
√
λ1λ2,−2

√
λ1λ2, 1) (23)

for the correlation matrix.
From the definition of the concurrence, equation (5), we obtain from equation (22)

C = 2
√
λ1λ2. (24)

Together with equation (8) and the normalization condition λ1 + λ2 = 1, we arrive at

λ1 =
1 + |aA|

2
=

1 +
√

1 − C2

2
(25)

and

λ2 =
1 − |aA|

2
=

1 −
√

1 − C2

2
. (26)
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When we insert equations (25) and (26) into the correlation matrix, equation (23), we obtain

K̃ = diag(C,−C, 1). (27)

Furthermore, by calculating the density matrices �̂A and �̂B with help of equations (6) and (22), and
comparing the result with equation (7), we find aA(B) = (0, 0, |aA|)T , that is the Bloch vectors point along
the z-axis of their respective subsystem.

We are now in the position to calculate the three parameters α, β and κ. From their definition,
equation (21), we obtain

κ = CeA,xeB,x − CeA,yeB,y + eA,zeB,z (28)

for the correlation parameter, as well as

α =
√

1 − C2 eA,z (29)

and
β =

√
1 − C2 eB,z (30)

for the bias of the user and the attacker, respectively. Here, we have defined eA(B) = (eA(B),x, eA(B),y , eA(B),z)T .
In appendix B we prove that equations (28)–(30) lead to the constraint

1 − C2

C2(1 − C2 − α2)
κ2 − 2α

C2(1 − C2 − α2)
κβ +

C2 + α2

C2(1 − C2 − α2)
β2 � 1. (31)

For any fixed parameter α, that is for a fixed measurement direction of the user, the equality in
equation (31) describes an ellipse in the κ–β-plane. All valid combinations of the parameters β and κ

therefore have to lie inside or on the boundary of this ellipse.

2.4.3. Special cases
We conclude our discussion by considering the two extreme limits of the concurrence C: (i) a separable
bipartite state, and (ii) a maximally entangled state.

For any separable state, that is C = 0, the constraint becomes

(αβ − κ)2 = 0, (32)

which is only fulfilled for κ = αβ.
As a consequence, we find that the logarithm of equation (20) vanishes leading us to

I = 0, (33)

as one would expect.
In the other extreme, when the state |Ψ〉 is maximally entangled, that is C = 1, the bias parameters

vanish in both subsystems, that is α = β = 0, and the correlation is bounded by −1 � κ � 1.
Inserting these values into equation (20), the mutual information takes the form

I =
∑
a,b

1

4

(
1 + (−1)a+bκ

)
log2

(
1 + (−1)a+bκ

)
, (34)

which after performing the summation reads

I(κ) =
1 + κ

2
log2 (1 + κ) +

1 − κ

2
log2 (1 − κ) . (35)

For κ = ±1, we get
I = 1, (36)

allowing the attacker to obtain complete information about the user’s random bit, independent of the user’s
measurement choice. We emphasize that for a maximally entangled state the user cannot prevent the
attacker from finding out his random bit.

3. Worst-case scenario

In the preceding section we have derived a general expression for the mutual information of a two-qubit
system which depends on the concurrence and the measurements performed relatively to the reduced
density matrices on both subsystems. We now discuss special measurement strategies of user and attacker
and highlight the important role of entanglement in our scheme. Throughout this section we consider the
worst case for the user, that is the attacker somehow knows the user’s measurement directions, as well as the
complete state |Ψ〉.

7
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Figure 2. Geometric determination of the absolute maximum of the mutual information I according to (39) under the
constraint equation (40). (a) The mutual information (top) is shown in its dependence on the correlation κ of the two systems
and the bias β in the measurement of the attacker. The ellipses in the κ–β-plane (bottom) enclose all the possible combinations
of κ and β that can be achieved by any measurement direction eB of the attacker. The eccentricities of these ellipses are
determined solely by the concurrence C quantifying the degree of entanglement between the qubits of the user and the attacker.
The green, black and red ellipses correspond to C = 0.3, C = 0.7 and C = 0.9, respectively. Due to the shape of the mutual
information, its maximal value is found on the intersection between the ellipse and the κ-axis, independent of the concurrence.
For increasing concurrences C the mutual information at this intersection increases. Thus, the maximal mutual information
increases with increasing concurrence. (b) Mutual information along the ellipses parameterized by an angle ϕ and corresponding
to the same values of the concurrences C as in (a). The angle ϕ is chosen such that ϕ = 0 corresponds to the intersection between
the ellipse and the positive κ-axis. For symmetry reasons, we only parameterize the ellipse from ϕ = 0 to ϕ = π. The mutual
information is maximal for the attacker choosing his measurement for the parameter ϕ = 0 or ϕ = π, that is at the intersections
of the ellipse with the κ-axis, independent of the concurrence C.

3.1. User’s choice of measurement direction
For a QRNG, a user would naturally maximize the entropy of the bits and therefore choose his
measurements in such a way that he obtains uniformly distributed bits with

WeA (0) = WeA (1) =
1

2
. (37)

According to equation (15) this requirement translates into condition

α = eA · aA = 0 (38)

for the user’s measurement.
Geometrically, this prescription means eA ⊥ aA, that is the measurement is perpendicular to the Bloch

vector of �̂A. There are infinitely many vectors eA that fulfill this condition. Throughout this section, we
consider this situation with a fixed eA but generalize it slightly in appendix D by allowing random
measurements corresponding to two different eA, which are both perpendicular to aA.

When we substitute equation (38) into equation (20), we obtain the mutual information

I =
1

4

∑
a,b

(
1 + (−1)bβ + (−1)a+bκ

)
log2

(
1 + (−1)a+b κ

1 + (−1)bβ

)
. (39)

The parameters κ and β are not independent, but constrained by the inequality

(κ
C
)2

+

(
β√

1 − C2

)2

� 1 (40)

corresponding to an ellipse with the semi-major and semi-minor axes coinciding with the κ and β axes,
which follows directly from equation (31) for α = 0.

3.2. Maximum of mutual information
In order to guarantee the secrecy of his random bits, the user has to address the question: What is the
maximal information following from (39) any attacker can obtain about the bit a for the given setting?

8
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Figure 3. Worst-case scenario for the user who chooses a measurement such that he obtains uniformly distributed bits. The
attacker selects his measurements as to maximize the mutual information. The corresponding mutual information Imax increases
for increasing values of the concurrence C (horizontal axis on the bottom) and decreases with increasing purity P of the state �̂A

of the user (horizontal axis on the top). Close to a pure state, that is P = 1, the decrease is linear.

3.2.1. Exact expression
Since the mutual information is a convex function in the κ–β-plane, its maximum has to lie on the
boundary of the ellipse. In figure 2 we show that the mutual information is maximized on the intersection
of the ellipse given by the constraint, equation (40), and the κ-axis. These points lead to the two conditions

β = 0 (41)

and
κ = ±C. (42)

The condition on the attacker’s bias, equation (41), means that the measurement direction of the
attacker eB is perpendicular to the Bloch vector aB of his subsystem. Hence, the attacker will also obtain a
uniform distribution of his bits. As for the user, there are infinitely many measurement directions, which
fulfill this condition.

The second condition, equation (42), together with equations (28), (29) and (38) leading to eA,z = 0,
poses the requirement

eA,xeB,x − eA,yeB,y = ±1 (43)

on the choice of the attacker’s measurement, which restricts the attacker’s measurement to two directions.
He can either choose eB = (eA,x,−eA,y, 0) or eB = (−eA,x, eA,y, 0).

As a result, by inserting equations (41) and (42) into (39), we find

Imax =
1

4

∑
a,b

(
1 + (−1)a+bC

)
log2

(
1 + (−1)a+bC

)
, (44)

and after performing the summations the maximal mutual information an attacker can gain by performing
a measurement on the environment reads

Imax =
1 + C

2
log2 (1 + C) +

1 − C
2

log2 (1 − C) . (45)

This expression is the central result of our article. We note, that we can also find equation (45) analytically.
This rather lengthy calculation is shown in detail in appendix C.

It is interesting to note that a similar equation holds true if the user switches between different
measurements. In appendix D we discuss this scenario in detail.

Figure 3 shows the maximal mutual information, equation (45), in its dependence on both the
concurrence and the purity. The more the two systems are entangled, that is the less pure the state of the
user, the more information can be gained from one measurement result about the other.

3.2.2. Asymptotic expressions
If the complete state |Ψ〉 is only weakly entangled corresponding to C � 1, we can perform a Taylor
expansion

ln(1 ± x) ∼= ±x − x2/2 +O(x3), (46)

of the logarithm to second order and thus approximate equation (45) by

Imax
∼=

C2

2 ln 2
+O(C3). (47)
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Hence, for small concurrences C the maximal mutual information only grows quadratically, and there is
almost no mutual information. The additional information on the more probable bit is almost
compensated by the less information about the less probable bit. Thus, for small concurrences C, the
information an attacker can gain is almost negligible, providing a certain robustness of such a QRNG
scheme against small entanglement between the QRNG’s system and the environment.

From the viewpoint of the user, equation (47) means that the mutual information decreases linearly
with the purity for P � 1. Indeed, when we substitute the connection, equation (10) between P and C2 into
equation (47) we find

Imax
∼=

1

ln 2
(1 − P) . (48)

On the other hand, for values of C � 1 the mutual information grows rapidly with increasing C, since
the positive term in equation (45) is weighted with a high probability, while the factor decreasing the
mutual information becomes smaller.

We finally remark that in our scheme the user needs to know the state �̂A of his subsystem, which in
general can be obtained by state tomography. The connection, equation (10), between the concurrence and
the purity of the user’s subsystem then allows the user to find an upper bound on the privacy of his data.

3.3. Binary entropy
We remark that the maximal mutual information, equation (45), is closely related to the randomness for the
‘classical’ Eve defined by (24) in reference [36] which is expected due to a similar setup. In contrast to our
result, the randomness used in reference [36] is described by a Shannon entropy, while we use the mutual
information.

These two quantities are closely related. In fact, equation (45) enjoys an elementary interpretation, based
on the binary entropy

Hb(p) ≡ −p log2 p − (1 − p)log2

(
1 − p

)
, (49)

for a probability p. Indeed, equation (45) can be written as

Imax = 1 − Hb

(
1 + C

2

)
. (50)

The first term on the right-hand side corresponds to the entropy of the user’s random number without any
correlation to another measurement result. This value is one, due to the fact that the user’s bit is equally
distributed.

The second term on the right-hand side, which subtracts from the user’s entropy, is the conditional
entropy of the user’s bit, when the attacker’s bit is known. This contribution corresponds to the entropy
that remains, even when the attacker has made a measurement, and therefore reduces the information he
can gain. Interestingly, this entropy corresponds to a binary entropy, with probabilities

p± ≡ 1

2
(1 ± C) . (51)

Hence, the concurrence C is a measure of the deviation from a uniform binary distribution. For a
vanishing concurrence the user’s bit is equally likely for any value of the attacker’s bit, while with increasing
concurrence the probability of having coincidental results between the user’s and the attacker’s outcome
increases.

3.4. Privacy of the quantum random numbers and quantum state discrimination
We conclude our discussion of the worst case scenario by taking a different point of view on the privacy of
the random numbers generated by a QRNG. Indeed the question of how much information an attacker can
maximally gain can also be considered as a quantum state discrimination task [39–41]. By performing a
measurement on the subsystem A, the state |ψa〉B of the attacker in the subsystem B is a pure state,
depending on the outcome a of the measurement performed on the subsystem A. The task of the attacker is
to discriminate his two states.

When the two states are orthogonal, the attacker can always perform a measurement, which allows him
to discriminate between the two states with certainty. In general, however, the two states are not orthogonal
and therefore there is no measurement that can decide unambiguously between the two cases.

It is well known, that the maximal mutual information accessible in this case is bounded from above
and below by the inequalities

χJRW � Imax � χH. (52)

10
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The upper bound is the well known Holevo bound [4]

χH ≡ S(�̂B) −
∑

a

WeA (a)S(�̂B|a) (53)

with �̂B|a ≡ |ψa〉B 〈ψa| and the Shannon entropy

S(�̂) = −tr(�̂ log2 �̂) = −
∑

k

λk log2λk, (54)

where λk denote the eigenvalues of the density operator �̂.
The lower bound for the maximal accessible information, proposed by Josza, Robb and Wootters [42], is

given by

χJRW ≡ Q(�̂B) −
∑

a

WeA (a)Q(�̂B|a) (55)

with the subentropy

Q(�̂) ≡ −
∑

k

⎛
⎝∑

l =k

λk

λk − λl

⎞
⎠λk log2λk. (56)

We now consider the state discrimination task for our problem of the QRNG in the worst-case scenario.
As a first step, we show that the states the attacker obtains are not orthogonal, as long as the combined state
|Ψ〉, defined in equation (4), is not maximally entangled.

For the measurement outcome a, the user finds the state

|ψa〉A =
1√
2

(
|↑〉A + (−1)aeiϕ|↓〉A

)
, (57)

with an arbitrary but fixed phase ϕ.
Therefore the state |ψa〉B in the subsystem B, conditioned on the measurement result a, reads

|ψa〉B =
A〈ψa|Ψ〉√

WeA (a)
=

√
2 A〈ψa|Ψ〉, (58)

where the probability WeA (a) = 1/2, given by equation (14), in the denominator ensures normalization.
We recall the state |Ψ〉 in the Schmidt decomposition, equation (22), and find

|ψa〉B =

√
1 + |aA|

2
|↑〉B + (−1)a

√
1 − |aA|

2
e−iϕ|↓〉B (59)

for the state in the subsystem B, conditioned that the user has measured the bit a.
For |aA| > 0 the scalar product

B〈ψ0|ψ1〉B =
1 + |aA|

2
− 1 − |aA|

2
= |aA| (60)

between the two states |ψ0〉B and |ψ1〉B, following from equation (59), does not vanish, and these two states
are not orthogonal.

In the next step, we calculate the bounds given by equations (53) and (55). Since the entropy vanishes
for a pure state, the Holevo bound is given by the Shannon entropy of the state �̂B of the attacker S(�̂B).

With the explicit formulas equations (25) and (26) for the eigenvalues λk and the definition of the
Shannon entropy S(�̂), equation (54), we find

χH = −1 +
√

1 − C2

2
log2

(
1 +

√
1 − C2

2

)
− 1 −

√
1 − C2

2
log2

(
1 −

√
1 − C2

2

)
(61)

for the Holevo bound.
We note, that the Holevo bound is closely related to the relative entropy of coherence, that is the

intrinsic randomness in the ‘quantum’ Eve case, calculated in reference [36]. This connection is not
surprising, since the Holevo bound corresponds to the amount of entropy contained in the state of the
attacker’s subsystem.
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Figure 4. Comparison between the maximal mutual information Imax, equation (45), the Holevo bound χH, equation (61), and
the lower bound χJRW for the maximal mutual information accessible, equation (62). The maximal mutual information for a
projective measurement lies between the Holevo bound and the lower bound for the maximal mutual information for all values
of the concurrence except for the boundaries C = 0 and C = 1.

Since the subentropy also vanishes for pure states, the maximal accessible information is given by the
subentropy Q(�̂B) of the attacker’s density matrix. By using the eigenvalues, equations (25) and (26), of |Ψ〉,
which are identical to those of �̂B, together with the definition of Q(�̂), equation (56), we obtain

χJRW = − (1 +
√

1 − C2)2

4
√

1 − C2
log2

(
1 +

√
1 − C2

2

)
+

(1 −
√

1 − C2)2

4
√

1 − C2
log2

(
1 −

√
1 − C2

2

)
(62)

for the minimal accessible information.
In figure 4 we compare our result for the maximal mutual information, equation (45), with the Holevo

bound, equation (61), and the minimal accessible information, equation (62). The result of our worst case
considerations, equation (45), is thus between the two bounds as expected. However, our result is strictly
lower than the Holevo bound except for the boundary values C = 0 and C = 1, and therefore an
improvement for the user over just assuming the Holevo bound. This advantage originates from the fact,
that the Holevo bound is only dependent on the maximal information contained of the state �̂B in the
subsystem B, independent of the composition of this state, that is of the exact form of the states |ψ0〉B and
|ψ1〉B. The Holevo bound is only tight if |ψ0〉B and |ψ1〉B are identical or orthogonal, which is only fulfilled
if the pure state |Ψ〉 of the combined system is either separable or maximally entangled. In all the cases in
between the Holevo bound is not tight. Our result, equation (45), is exact, and therefore takes the
measurement of the user and hence the exact form of |ψ0〉B and |ψ1〉B into account.

4. Conclusions and outlook

We are now in the position to summarize our results and provide a short outlook. Throughout this article
we have discussed the privacy of random numbers created by a non-ideal QRNG represented by a single
qubit system coupled to another qubit system that models the environment an attacker may have access to
and which is due to the fact that the user cannot prepare a perfectly pure quantum state.

We have provided an upper bound, equation (45), on how much information the attacker can gain
about the user’s random bit. From this expression, we conclude that the limiting factor on this bound is the
entanglement between the QRNG system and its environment, quantified by the concurrence. We
emphasize that our upper bound holds without any further restrictions on the user’s or attacker’s
measurement scheme.

Moreover, we have shown that our scheme can be interpreted in terms of quantum state discrimination.
This point of view allows us to compare the result to the known bounds. Since our worst case analysis is
exact, our result improves the well-known Holevo bound in this special case.

We emphasize that our results can directly be applied to different QRNG realizations. Furthermore, our
analysis can be extended to generalized measurements, such as POVMs, and measurement strategies, which
may lead to a further reduction of the maximal mutual information. This extension also allows us to
include the effects of detector efficiencies into our model.

With these modifications our model will constitute an elementary yet useful tool to estimate the
maximal information the attacker can gain on the numbers created by QRNGs. We will also be able to
extend our model to self-testing QRNG devices, by further including the state tomography directly into the
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measurement protocol. Finally we might improve existing lower bounds on the min-entropy. These topics,
however, go beyond the scope of the present article and will be addressed in a future publication.
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Appendix A. Calculation of the correlation matrix

In this appendix we calculate the correlation matrix K̃ , defined in equation (19), for a general entangled two
qubit state

|Ψ〉 =
√
λ1 |↑↑〉+

√
λ2 |↓↓〉 , (A.1)

as defined in equation (22). Since this state is symmetric in the two subsystems, it is obvious that the matrix
K̃ has to be symmetric too, that is K̃ij = K̃ ji.

Thus, we only have to evaluate six coefficients. We start with the three off-diagonal coefficients. The first
one is

K̃xy = 〈Ψ| σ̂x ⊗ σ̂y |Ψ〉 . (A.2)

By inserting the definition of the state, equation (A.1), as well as of the Pauli matrices, we obtain

K̃xy = 〈Ψ|
(

i
√
λ2 |↑↑〉 − i

√
λ1 |↓↓〉

)
, (A.3)

which then becomes
K̃xy = i

(√
λ1λ2 −

√
λ2λ1

)
= 0. (A.4)

Furthermore, in the case of i = x, y and j = z, we find

σ̂i ⊗ σ̂z |Ψ〉 = ci,1 |↑↓〉+ ci,2 |↓↑〉 (A.5)

with some coefficients ci,1 and ci,2, depending on i = x, y. These states are clearly orthogonal to the state |Ψ〉,
and therefore we find K̃xz = K̃yz = 0.

Hence, the correlation matrix is diagonal in the Schmidt basis. The only remaining task is therefore to
find the diagonal components. For i = j = x we find

K̃xx = 〈Ψ|
(√

λ2 |↑↑〉+
√
λ1 |↓↓〉

)
(A.6)

which gives
K̃xx = 2

√
λ1λ2. (A.7)

Analogously, for i = j = y, we have

K̃yy = 〈Ψ|
(
−
√
λ2 |↑↑〉 −

√
λ1 |↓↓〉

)
(A.8)

leading to
K̃yy = −2

√
λ1λ2. (A.9)

Finally, for the case i = j = z we find

K̃zz = 〈Ψ|
(√

λ1 |↑↑〉+
√
λ2 |↓↓〉

)
= 〈Ψ|Ψ〉 = 1, (A.10)

since the state |Ψ〉 is normalized.
Combining all of the above results, we finally obtain the correlation matrix

K̃ = diag(2
√
λ1λ2,−2

√
λ1λ2, 1). (A.11)
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Appendix B. Parameter constraints

In this appendix, we derive the constraints for the parameters α,β and κ for a general state |Ψ〉. In fact, we
show that for an arbitrary but fixed measurement parameter α the two parameters β and κ lie inside an
ellipse in the κ–β-plane, while the shape of the ellipse is determined by α.

We have shown in the main part of the article that the three parameters are given by

κ = CeA,xeB,x − CeA,yeB,y + eA,zeB,z (B.1)

as well as
α =

√
1 − C2eA,z (B.2)

and
β =

√
1 − C2eB,z. (B.3)

By introducing spherical coordinates in both subsystems A and B, that is

eA(B) =

⎛
⎝sin θA(B) cosϕA(B)

sin θA(B) sinϕA(B)

cos θA(B)

⎞
⎠ , (B.4)

the parameters of equations (B.1)–(B.3) can be rewritten as

κ = C sin θA sin θB cos(ϕA − ϕB) + cos θA cos θB (B.5)

as well as
α =

√
1 − C2 cos θA (B.6)

and
β =

√
1 − C2 cos θB. (B.7)

From equation (B.5) we get

(κ− cos θA cos θB)2 = C2 sin2θA sin2θB cos2(ϕA − ϕB) (B.8)

by bringing the second term on the right-hand side of equation (B.5) to the left-hand side and squaring the
resulting equation. Since we have cos x � 1 for all x, we furthermore find

(κ− cos θA cos θB)2 � C2 sin2θA sin2θB, (B.9)

which is equivalent to

κ2 − 2 cos θA cos θBκ+ cos2θAcos2θB � C2(1 − cos2θA)(1 − cos2θB). (B.10)

Solving equations (B.6) and (B.7) for cos θA and cos θB, respectively, and inserting these relations into
equation (B.10) gives

κ2 − 2

1 − C2
αβκ+

α2β2

(1 − C2)2
� C2

(1 − C2)2

(
1 − C2 − α2

) (
1 − C2 − β2

)
, (B.11)

which can be rewritten as

1 − C2

C2(1 − C2 − α2)
κ2 − 2α

C2(1 − C2 − α2)
βκ+

α2 + C2

C2(1 − C2 − α2)
β2 � 1. (B.12)

Note, that for a fixed parameter α, this inequality describes the area enclosed by an ellipse in the κ–β-plane,
where the shape and orientation of the ellipse are determined by α and the concurrence C.

Appendix C. Maximizing the mutual information

In this appendix, we analytically derive the maximal mutual information an attacker can have access to, in
the case of a QRNG setting. The measurement of the user is described by a vector eA with eA · aA = 0.

The mutual information for this setting is given by

I =
1

4

∑
a,b

(
1 + (−1)b β + (−1)a+bκ

)
log2

(
1 + (−1)bβ + (−1)a+bκ

1 + (−1)bβ

)
, (C.1)
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while the two parameters κ and β are constraint by the inequality

(κ
C
)2

+

(
β√

1 − C2

)2

� 1, (C.2)

which means that they lie inside an ellipse in the κ–β-plane.

C.1. Convexity
It is well known that the mutual information is convex as a function of the conditional probability
WeA,eB (b|a) for a fixed marginal distribution WeA (a), however, it is not obvious that it is also convex in the
κ–β-plane. We now show, that the mutual information I is a convex function in the κ–β-plane, that is

I(λκ1 + (1 − λ)κ2,λβ1 + (1 − λ)β2) � λI(κ1,β1) + (1 − λ)I(κ2,β2) (C.3)

for every λ with 0 � λ � 1.
We prove the relation, equation (C.3), by starting from the right-hand side of the inequality. By

definition, we find

λI(κ1,β1) + (1 − λ)I(κ2,β2) =
∑

a,b

2∑
i=1

xi log2

(
xi

yi

)
, (C.4)

where we have introduced the abbreviations

x1 ≡
λ

4

(
1 + (−1)bβ1 + (−1)a+bκ1

)
(C.5)

and

x2 ≡
1 − λ

4

(
1 + (−1)bβ2 + (−1)a+bκ2

)
, (C.6)

as well as

y1 ≡
λ

4

(
1 + (−1)bβ1

)
(C.7)

and

y2 ≡
1 − λ

4

(
1 + (−1)bβ2

)
. (C.8)

According to the log sum inequality [38] we have

2∑
i=1

xi log2

(
xi

yi

)
� x log2

(
x

y

)
(C.9)

with x ≡ x1 + x2 and y ≡ y1 + y2.
Hence, we find

λI(κ1,β1) + (1 − λ)I(κ2,β2) �
∑
a,b

x log2

(
x

y

)
. (C.10)

By explicitly calculating x and y and comparing it with the definition of the mutual information we find

∑
a,b

x log2

(
x

y

)
= I(λκ1 + (1 − λ)κ2,λβ1 + (1 − λ)β2) (C.11)

which with equation (C.10) proves the convexity of the mutual information, equation (C.3).

C.2. Extrema
Due to the convexity of the mutual information, the maximum of the mutual information lies on the
boundary of the ellipse. Hence, it is sufficient to restrict ourselves to the constraint

(κ
C
)2

+

(
β√

1 − C2

)2

= 1, (C.12)

which is an equality instead of an inequality.
We can parametrize the ellipse by an angle ϕ, such that we have

κ(ϕ) = C cosϕ (C.13)
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and
β(ϕ) =

√
1 − C2 sinϕ. (C.14)

Inserting these two equations back into equation (C.1), the mutual information becomes a function only
dependent on a single parameter ϕ. In order to maximize this function, we calculate the derivative with
respect to ϕ

dI(ϕ)

dϕ
=

∂I(κ,β)

∂κ

dκ

dϕ
+

∂I(κ,β)

∂β

dβ

dϕ
. (C.15)

First, from equations (C.13) and (C.14), we obtain the derivatives

dκ

dϕ
= −C sinϕ = − C√

1 − C2
β(ϕ) (C.16)

and
dβ

dϕ
=

√
1 − C2 cosϕ =

√
1 − C2

C κ(ϕ). (C.17)

We will now calculate the partial derivatives of the mutual information with respect to κ and β. For the
derivative with respect to κ, we find

∂I

∂κ
=

1

4

∑
a,b

(−1)a+b log2

(
1 + (−1)a+b κ

1 + (−1)bβ

)
+

1

4 ln 2

∑
a,b

(−1)a+b. (C.18)

The second sum vanishes due to symmetry, such that we are left with

∂I

∂κ
=

1

4

∑
a,b

(−1)a+b log2

(
1 + (−1)a+b κ

1 + (−1)bβ

)
, (C.19)

which is in general non-vanishing.
The derivative with respect to β is given by

∂I

∂β
=

1

4

∑
a,b

(−1)b log2

(
1 + (−1)a+b κ

1 + (−1)bβ

)
+

1

4 ln 2

∑
a,b

(−1)a κ

1 + (−1)bβ
. (C.20)

The second sum vanishes again due to symmetry relations, and we find

∂I

∂β
=

1

4

∑
a,b

(−1)b log2

(
1 + (−1)a+b κ

1 + (−1)bβ

)
. (C.21)

When we insert this result together with equation (C.19) into equation (C.15), we obtain

dI(ϕ)

dϕ
=

1

4

∑
a,b

(
(−1)b

√
1 − C2

C κ(ϕ) − (−1)a+b C√
1 − C2

β(ϕ)

)

× log2

(
1 + (−1)a+b κ

1 + (−1)bβ

)
(C.22)

This derivative has roots at β = 0 and κ = 0. Unfortunately, it is not obvious from an analytical point of
view that those are the only two extrema. However, numerical simulations show, that these are indeed the
only ones.

For κ = 0 it follows from equation (C.1), that the mutual information vanishes for every value of β.
Since the mutual information cannot be negative, κ = 0 represents a minimum of the mutual information.

C.3. Maximum
We finally prove that β = 0 is indeed a maximum of the mutual information. In order to do so, we take a
look at the second order derivative

d2I(ϕ)

dϕ2
=

∂2I(κ,β)

∂κ2

(
dκ

dϕ

)2

+ 2
∂2I(κ,β)

∂β∂κ

dβ

dϕ

dκ

dϕ
+

∂2I(κ,β)

∂β2

(
dβ

dϕ

)2

+
∂I(κ,β)

∂κ

d2κ

dϕ2
+

∂I(κ,β)

∂β

d2β

dϕ2
, (C.23)
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which, in the case of β = 0, simplifies to

d2I(ϕ)

dϕ2

∣∣∣∣
β=0

=
∂I(κ,β)

∂κ

d2κ

dϕ2

∣∣∣∣
β=0

+
∂2I(κ,β)

∂β2

(
dβ

dϕ

)2
∣∣∣∣∣
β=0

. (C.24)

Calculating both terms explicitly, we find

∂I(κ,β)

∂κ

d2κ

dϕ2

∣∣∣∣
β=0

= −C
2

(
log2 (1 + C) − log2 (1 − C)

)
(C.25)

as well as
∂2I(κ,β)

∂β2

(
dβ

dϕ

)2
∣∣∣∣∣
β=0

=
C2

ln 2
. (C.26)

Hence, we arrive at
d2I(ϕ)

dϕ2

∣∣∣∣
β=0

=
C2

ln 2
− C

2

(
log2 (1 + C) − log2 (1 − C)

)
. (C.27)

Since the values of C are restricted to the interval 0 < C < 1, we can evaluate the logarithms with help of
the series representation

ln(1 + x) =
∞∑

n=1

(−1)n+1 xn

n
(C.28)

valid for |x| < 1, and the relation

log2 x =
ln x

ln 2
(C.29)

for converting the binary to the natural logarithm leads us to the identity

log2 (1 + C) − log2 (1 − C) =
2

ln 2

∞∑
n=0

C2n+1

2n + 1
(C.30)

or

log2 (1 + C) − log2 (1 − C) =
2C
ln 2

+
2

ln 2

∞∑
n=1

C2n+1

2n + 1
. (C.31)

When we insert this relation into equation (C.29), we find

d2I(ϕ)

dϕ2

∣∣∣∣
β=0

= − C
ln 2

∞∑
n=1

C2n+1

2n + 1
� 0, (C.32)

with equality if and only if C = 0. Thus, the extremum β = 0 corresponds to a maximum.

Appendix D. Random measurements of the user

In section 3 we have considered the case in which the same projective measurement direction was chosen in
each subsystem and for each experimental run. However, in general both the user and the attacker are not
restricted to a specific measurement direction but can select in each measurement a different one. In this
appendix, we discuss the special case in which the user is able to choose between two distinct measurement
directions at random, while we assume that the attacker stays with one.

This procedure is not necessarily the best approach for the attacker to pursue in order to maximize his
information on the user’s bit, but a realistic one if the attacker has neither the possibility to know the user’s
specific choice each time, or if he can only act passively, that is he cannot control the measurement on the
environment.

If, on the other hand, the attacker knew the measurement strategy, he could also perform measurements
in two directions, correlated to the user’s measurements. In this case the user’s advantage is lost, since it
reduces to the case of a single measurement direction in both A and B, discussed in section 2.

D.1. Joint probabilities
We now consider the scenario in which the user randomly chooses with equal probability from the two
measurement directions e(1)

A and e(2)
A which are both perpendicular to the Bloch vector aA, but differ by an

angle γ with 0 � γ � π.
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Here, the constraint of the vectors being perpendicular to the Bloch vector, is again made in order to
obtain uniformly distributed bits a, that is

W
e(1)

A
(a) = W

e(2)
A

(a) =
1

2
(D.1)

following from equation (15). In contrast, the attacker uses a single measurement direction eB.
The joint probability

W{e
(j)
A },eB

(a, b) =
1

2

(
W

e(1)
A ,eB

(a, b) + W
e(2)

A ,eB
(a, b)

)
, (D.2)

is the average value of the probabilities W
e(1)

A ,eB
and W

e(2)
A ,eB

, which are given by equation (18), of the

individual measurement directions, since both measurement directions e(1)
A and e(2)

A are independent of each
other and occur with the same probability.

We write equation (D.2) in the form

W{e
(j)
A },eB

(a, b) =
1

4

(
1 + (−1)bβ + (−1)a+bκeff

)
(D.3)

with a new effective correlation parameter

κeff ≡
(

e(1)
A + e(2)

A

2

)T

K̃eB (D.4)

When we define the unit vector

eA ≡ e(1)
A + e(2)

A

|e(1)
A + e(2)

A |
, (D.5)

which is again perpendicular to the Bloch vector aA, we obtain

κeff = cos
(γ

2

)
eT

AK̃eB, (D.6)

since we have
|e(1)

A + e(2)
A | =

√
2(1 + cos γ) = 2 cos

(γ
2

)
. (D.7)

Apart from the constant factor cos(γ/2) the correlation parameter κeff , equation (D.6), is the same as
the correlation parameter κ, equation (21), for the case of single measurement.

By using equation (19), together with eA,z = 0, we find

κeff = CeffeA,xeB,x − CeffeA,yeB,y, (D.8)

with the effective correlation
Ceff ≡ C cos

(γ
2

)
. (D.9)

D.2. Discussion and caveat
By comparing equation (D.8) with equation (28) for the case of eA,z = 0, we see that they only differ by in
their concurrence. Hence, the maximal mutual information still has the form of (45), with the concurrence
C being replaced by Ceff.

The case γ = 0, that is when both measurements coincide with another, reduces to the one of a single
measurement direction, discussed in section 3. However, for γ > 0, we have cos(γ/2) < 1, and thus the
maximal mutual information is decreased compared to a single measurement direction. Indeed, by
choosing γ = π, the maximal achievable mutual information is reduced to Imax = 0, independent of the
concurrence of the state.

In this scenario the user randomly chooses orthogonal measurement directions. Hence, the randomness
originates from the fact that he randomly assigns different bit values to the same measurement result. As a
consequence, the user would need another QRNG to create this randomness, in this way he puts turtles on
top of turtles.
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