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Upper bound on certifiable randomness from a quantum black-box device

Marie Ioannou,1 Jonatan Bohr Brask,1,2 and Nicolas Brunner1

1Département de Physique Appliquée, Université de Genève, 1211 Genève, Switzerland
2Department of Physics, Technical University of Denmark, Fysikvej, Kongens Lyngby 2800, Denmark

(Received 27 November 2018; published 23 May 2019)

Quantum theory allows for randomness generation in a device-independent setting, where no detailed
description of the experimental device is required. Here we derive a general upper bound on the amount of
randomness that can be certified in such a setting. Our bound applies to any black-box scenario, thus covering
a wide range of scenarios from partially characterized to completely uncharacterized devices. Specifically, we
prove that the number of random bits that can be certified is limited by the number of different input states that
enter the measurement device. We show explicitly that our bound is tight in the simplest cases. More generally,
our paper indicates that the prospects of certifying a large amount of randomness by using high-dimensional (or
even continuous variable) systems will be extremely challenging in practice.
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I. INTRODUCTION

Randomness is a characteristic feature of quantum theory.
The unpredictability of measurements performed on a quan-
tum system has deep implications for information processing,
e.g., for quantum random number generation [1–3], arguably
one of the most developed applications of quantum informa-
tion science.

The initial idea for devising a quantum random number
generator (QRNG) consisted in sending a single quantum
particle (say a photon) onto a balanced beam splitter followed
by two detectors [4–6]. According to quantum theory, it
is completely unpredictable on which detector each particle
will arrive, thus resulting in a perfectly random bit. The
simplicity of this scheme makes it well suited to experimental
implementations, and current commercially available QRNGs
are mostly based on this principle. In practice, however, the
implementation of this scheme is much more challenging than
it may appear at first sight. The reason is that any experimental
implementation is prone to technical imperfections that in-
troduce unavoidable noise. A rigorous characterization of the
devices is therefore required to separate technical noise from
true quantum randomness, which is often cumbersome and
challenging in practice [7–10].

Interestingly, these problems can in principle be over-
come by using a more general approach known as device-
independent (DI) certification of quantum randomness. Here
a detailed description of the experimental devices is not
required, and the user can estimate the amount of randomness
generated (i.e., the entropy of the output) based on observed
experimental data only, i.e., treating the measurement device
as a “black box.” Several forms of DI protocols have been
considered, featuring different levels of security and practical-
ity. The highest level of security is achieved in the so-called
fully DI approach, based on a loophole-free demonstration
of quantum nonlocality [11,12]. Alternative approaches, re-
ferred to as semi-DI (SDI) [13], were developed for prepare-
and-measure setups, much easier to implement in practice.
These schemes typically require a general assumption on the

quantum systems involved, for instance an upper bound on
the Hilbert-space dimension [14,15] or on the energy [16],
or a lower bound on the overlap between states [17]. Other
approaches to partially DI QRNGs have also been investigated
(see e.g., Refs. [18–23]). Currently, there is a strong effort
towards the implementation of DI and semi-DI QRNGs. State-
of-the-art laboratories have demonstrated fully DI QRNGs
[12,24–27]. Semi-DI QRNGs were also realized [28–30],
and Ref. [17] recently reported performance comparable to
commercial devices. This significant progress has triggered
considerable attention, and it is now an important question
to find novel schemes generating as much randomness as
possible.

This then naturally raises the question of what the ultimate
limits of randomness generation in DI and SDI scenarios are.
More generally, given a setup involving a black-box measure-
ment device, what is the maximal amount of randomness that
can possibly be generated? Beyond the fundamental interest,
this question is also relevant to the development of practical
and efficient schemes, providing a benchmark for randomness
generation protocols. Understanding the limits of randomness
generation allows one to characterize the performance of a
given scheme in a meaningful manner.

Here, we address this question. Our main result is an upper
bound on the amount of randomness that can be certified
in any black-box scenario. Notably this bound applies to
all scenarios where the measurement device is uncharacter-
ized, hence covering in particular the DI and SDI cases.
Specifically, we show that it is not only the number of
measurements outcomes that limits the entropy of the output,
but also the number of different input states entering the
measurement device. For a measurement device providing l
outputs and receiving k different input quantum states, the
number of random bits that can be certified is upper bounded
by log2(min{l, k + 1}). Moreover, we show that our bound
is tight for the two simplest SDI scenarios with k = 2, 3.
Finally, we conclude with a discussion of the implications of
our results.
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II. BASICS

For clarity we will present our result in the SDI picture,
considering a prepare-and-measure scenario. The preparation
device takes as input x ∈ {0, 1, ..., k − 1} and emits a quantum
state ρx. The emitted state is sent to a measurement device,
where a measurement is selected via an input y ∈ {0, ..., m −
1}. The selected measurement is performed and provides an
outcome b ∈ {0, ..., l − 1}. The observed statistics is given by
the probabilities

p(b|x, y) = Tr[Mb|yρx], (1)

where Mb|y are the elements of a positive-operator-valued
measure (POVM) describing the measurement. Importantly,
in this picture the observer chooses the inputs x and y and
records the output b, but does not necessarily know what
quantum states ρx and measurements Mb|y are actually being
implemented inside the black boxes.

To certify randomness in this SDI scenario, one needs to
limit the set of possible states ρx that can be prepared. If not,
all possible distributions p(b|x, y) can be obtained, by simply
encoding the input x in a set of k orthogonal quantum states.
Hence, the observed data do not enable any differentiation
between classical and quantum behaviours of the devices, and
no randomness can be certified. Several possibilities to limit
the set of prepared quantum states have been investigated,
such as bounds on the Hilbert-space dimension, the energy,
or the overlap. Here this choice is not important, as our result
will apply in full generality, irrespective of which specific
assumption is considered. In particular, the states could be
completely characterized.

Our goal is to derive an upper bound on the number of
random bits that can be certified from the output b in this
black-box setting. Consider an observer (or a potential adver-
sary) having complete knowledge of the inner workings of the
devices, i.e., knowing exactly what the prepared states ρx and
the measurements Mb|y are. How well can such an observer
predict b? Clearly, a first limit arises simply from the finite car-
dinality of b. As there are only l possible outcomes b, no more
than log2(l ) bits of randomness can be certified. It is natural
then to ask if this bound can be attained in general. This would
be of particular interest for setups where the output alphabet
is very large (or even infinite) as in continuous variable (CV)
optics implementations (see, e.g., Refs. [31–33]), thus leading
to the certification of a large number of random bits in each
round. We will show, however, that this is not possible in
general. Specifically, we prove that the number of random bits
that can be certified is upper bounded by log2(k + 1). Hence,
the maximal randomness depends not only on the properties
of the measurement device but also on the preparation device.
We also note that, although we do not explicitly account for
classical or quantum side information in the following, such
side information can only decrease the amount of certifiable
randomness. Hence our upper bound also applies to scenarios
with side information.

Before discussing our main result, we introduce some
notation. For our analysis, it will be enough to con-
sider finite-dimensional systems, i.e., qudits. These can be
conveniently characterized via a generalized Bloch-sphere

representation [34]:

ρ = 1

d
(1 + cd�n · �σ ), (2)

where �n ∈ Rd2−1, cd =
√

d (d−1)
2 and �σ is a vector of the

generalized Gell-Mann matrices (for d = 2, this a vector of
the three Pauli matrices). These d2 − 1 matrices are traceless
and form an orthogonal basis for the space of d × d Hermitian
matrices, i.e., Tr[σi] = 0 and Tr[σiσ j] = 2δi, j . From this, it
follows that ρ is self-adjoint and has unit trace. However, it
is not guaranteed to be positive semidefinite unless further
restrictions are placed on �n. For pure states, a simple criterion
can be stated in terms of the so-called star product, defined
by (�u � �v)i = cd

d−2

∑d2−1
j,k=1 di jku jvk where di jk is a symmetric

tensor given by the structure constants of the Lie algebra of
SU(d ). The expression (2) represents a valid pure state if and
only if |�n| = 1 and �n � �n = �n [35].

A measurement is represented by a POVM acting on this d-
dimensional Hilbert space. Considering rank-1 POVMs with
N outcomes PN , there exists a set of positive coefficients {λb}
such that PN = {λbEb} = {Mb} and

∑N
b=1 λbEb = 1 where Eb

are rank-1 projectors (see e.g., Ref. [36]). Using the general-
ized Bloch-sphere representation, Eb can be written as

Eb = 1

d
(1d + cd�vb · �σ ), (3)

where again �vb ∈ Rd2−1 is a unit vector satisfying �vb � �vb =
�vb. The validity of a rank-1 POVM is ensured by∑

b

λb = d,
∑

b

λb�vb = �0, λb � 0 . (4)

We will need to consider convex combinations of POVMs
and POVMs with different numbers of outcomes. Given two
POVMs P(1) and P(2), their convex combination pP(1) + (1 −
p)P(2) is a POVM with the ith element given by pM (1)

i +
(1 − p)M (2)

i , for some p ∈ [0, 1]. A POVM is called extremal
when it cannot be expressed as a convex combination of
other POVMs. Any POVM can be decomposed into extremal
ones, and since convex combinations can be obtained via
classical postprocessing, clearly no POVM can generate more
randomness than the best extremal entering in its decompo-
sition. Thus, while we consider a scenario with l-outcome
measurements, it will be interesting to consider POVMs that
can be decomposed into extremal ones with fewer outcomes.
By PN we denote a POVM with N nonzero elements (and thus
l − N zero elements), and by PN we denote the set of POVMs
which can be written as convex combinations of N-outcome
POVMs.

III. MAIN RESULT

Our main result is a general upper bound on the amount
of randomness that can be certified in a black-box scenario.
Below we prove the result for the SDI prepare-and-measure
scenario. Then we discuss the extension to the fully DI
scenario, based on a Bell test.

Let us first give the intuition behind the result. In the
black-box scenario, any setup featuring k different prepared
quantum states can always be modeled by considering a set
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of states ρx living in a Hilbert space of dimension d = k, i.e.,
Ck . In turn, this implies that the measurement operators {Mb|y}
can also be considered to act on Ck . Now, any POVM acting
on Ck can be simulated from extremal POVMs and classical
postprocessing. As any extremal POVM acting on Ck features
at most k2 outcomes [37], it follows directly that no more than
2 log2(k) random bits can be certified per round.

This simple argument explains why randomness is
bounded by the number of possible preparations k. How-
ever, the above bound is far from being tight, and we now
derive a much stronger one. The intuition is the following.
With only k preparations, their corresponding Bloch vectors
span a k-dimensional real space and any component of the
measurements acting outside this space will not contribute to
randomness generation, so only a subset of POVMs acting on
Ck will be relevant. For the relevant subset, we find that all
extremal POVMs have at most k + 1 outputs, and it follows
that no more than log2(k + 1) bits can actually be certified.

We note that any POVM element with rank higher than
1 can always be decomposed into a combination of rank-1
operators. By assigning separate outcomes to these operators,
one obtains a rank-1 POVM with additional outcomes. The
original POVM can be obtained from this larger POVM
by classical postprocessing (by binning several outcomes
together) [36,38]. Since classical postprocessing cannot in-
crease the amount of randomness, we can restrict our analysis
to rank-1 POVMs.

Theorem 1. In a prepare-and-measure setup with k prepared
states, and m measurements providing l outputs, one can
certify at most log2(min{l, k + 1}) random bits per round.

Proof. The fact that no more than log2(l ) random bits can
be generated trivially follows from the fact that one can simply
guess at random the output b. The main aspect of the proof is
therefore to show that the number of random bits is bounded
by log2(k + 1). Also note that the following arguments hold
for any y, and thus the bound holds irrespective of m.

Given k different prepared quantum states, we can without
loss of generality consider that all states ρx act on a Hilbert-
space dimension d = k. The statistics can thus be expressed
using the generalized Bloch-sphere representation:

p(b|x, y) = λb|y
d

[1 + (d − 1)�vb|y · �nx]. (5)

First, note that the components of �vb|y orthogonal to �nx will not
contribute to the statistics. Therefore, it is sufficient in general
to consider POVMs the Bloch vectors �vb|y of which live in
the space spanned by {�n0, ..., �nd−1}. Secondly, as p(b|x, y) is
linear in Mb|y, it is sufficient to focus on extremal POVMs.
Indeed, if Mb|y is not extremal, i.e., it can be written as
a convex combination Mb|y = pM (1)

b|y + (1 − p)M (2)
b|y with p ∈

[0, 1], then Mb|y cannot generate more randomness than M (1)
b|y

or M (2)
b|y .

To summarize, we need to focus on extremal rank-1
POVMs with Bloch vectors �vb living in the d-dimensional
space spanned by {�n0, ..., �nd−1}. Specifically, we would like
to determine the maximal number of outputs of any these
POVMs. In the following we will show that this maximal
number is d + 1.

In Rd one needs d vectors to span a solid angle. Given d +
1 vectors either (i) one of them lies in the solid angle spanned
by the others and is thus a conical combination of them or
(ii) the solid angles spanned by all the possible subsets of d
vectors cover the entire (d − 1) sphere. Hence, any additional
vector will necessarily fall in the solid angle spanned by d of
the original vectors and thus be a conical combination of them.
Thus, in dimension d , given d + 2 or more vectors, at least
one is always a conical combination of d others. The theorem
then follows from the following lemma by induction. �

Lemma 1. Given a rank-1 POVM with l outputs Pl , if one of
the generalized Bloch vectors is a conical combination of l ′ �
l − 1 of the others, then the POVM can be written as a convex
combination of two rank-1 POVMs with l − 1 outcomes each,
i.e., Pl = pP(1)

l−1 + (1 − p)P(2)
l−1.

Proof. Let us consider a rank-1 POVM with l elements
Pl = {Mb}, b = 0, . . . , l − 1. The POVM elements are given
by Mb = λbEb where Eb are expressed in the generalized
Bloch-like representation (3). The parameters λb and �vb sat-
isfy the conditions (4) such that the Mb’s form a valid POVM.

First, the operation consists in extracting P(1)
l−1 from Pl .

Without loss of generality, we make the assumption that �v0 is
a conical combination of l − 1 vectors �v0 = ∑l−1

b=1 cb�vb with
0 � cb. The parameters λ

(1)
b and �v(1)

b of M (1)
b are given by

�v(1)
b = �vb, λ

(1)
0 = 0, λ

(1)
b = 1

N (λb + λ0cb), where N is a
normalization coefficient to be fixed in order to satisfy the first
condition in (4). The second condition in (4) is also fulfilled:

l−1∑
b=0

λ
(1)
b �vb = λ

(1)
0 �v0 +

l−1∑
b=1

1

N
(λb + λ0cb)�vb

= 1

N

(
l−1∑
b=1

λb�vb + λ0

l−1∑
b=1

cb�vb

)

= 1

N
(−λ0�v0 + λ0�v0) = �0. (6)

The last condition is straightforward to verify, i.e., λ
(1)
b � 0.

The first step is done: P(1)
l−1 = {M (1)

b } is a valid POVM.
Next, the coefficient of the convex combination p is defined

as follows:

p = min
b

λb

λ
(1)
b

. (7)

Here, p ∈ [0, 1] since
∑l−1

b=0 λb = ∑l−1
b=0 λ

(1)
b = d .

Finally, P(2)
l−1 can be fixed by defining the parameters of

M (2)
b as �v(2)

b = �vb, λ
(2)
b = λb−pλ(1)

b
1−p . Assuming that the min-

imum of (7) occurs for b∗, this implies λ∗
b = 0 and thus

a POVM with m − 1 outcomes. Let us check that the first
condition of (4) is fulfilled:

l−1∑
b=0

λ
(2)
b = 1

1 − p
(d − pd ) = d. (8)

Using (4) and (6) it is straightforward to verify that

l−1∑
b=0

λ
(2)
b �v(2)

b =
l−1∑
b=0

λb − pλ(1)
b

1 − p
�vb = �0. (9)
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The positivity of λ
(2)
b is ensured by the choice of p (7). Hence,

P(2)
l−1 = {M (2)

b } is also a valid POVM. And by construction, Pl

is a convex combination of the two extracted POVMs, Pl =
pP(1)

l−1 + (1 − p)P(2)
l−1. �

We note that Lemma 1 could also be of independent inter-
est, for example, in the context of the simulation of certain
POVMs using other measurements [39–41].

Theorem 1 is also relevant in the context of randomness
certification in the fully DI scenario. Consider a Bell test
with two spatially separated parties, Alice and Bob, sharing
a quantum state ρ ∈ Cd ⊗ Cd . Upon receiving an input x
for Alice and y for Bob, they output a and b, respectively.
When Alice performs measurement x and obtains output a,
Bob’s system is steered into the (un-normalized) state σa|x =
TrA[ρ(Ma|x ⊗ 1B)], where Ma|x is the POVM element for
Alice’s measurement. Bob can thus receive at most |x|·|a|
different states. From Theorem 1, Corollary 1 then directly
follows.

Corollary 1. Consider a Bell scenario with Alice hav-
ing |x| inputs and |a| outputs, and Bob having |y| in-
puts and |b| outputs. Then, Alice can locally certify at
most log2(min{|a|, |y|·|b| + 1}) random bits per round, and
similarly for Bob. Together, Alice and Bob can certify at
most log2(min{|a| · |b|, (|y|·|b| + 1)|b|, (|x|·|a| + 1)|a|}) bits
of global randomness per round.

IV. TIGHTNESS

Theorem 1 gives a general upper bound on the output
entropy that can be certified. It is thus natural to ask whether
this bound is tight. Here we consider the two simplest cases of
a SDI prepare-and-measure setup with k = 2, 3 preparations.
In both cases, the bound of Theorem 1 can be reached asymp-
totically.

Consider a preparation device emitting |ψx〉 with x ∈
{0, . . . , k − 1}. Following Ref. [17] we consider an assump-
tion on the distinguishability of the states; specifically, we
lower bound their overlap |〈ψi|ψ j〉| � δ for all i, j. Note that
such an assumption is well suited for optical setups, as it
corresponds to an upper bound on the intensity of the light
source. To quantify the genuine randomness in b, we use the
minimum entropy Hmin = − log2(pguess) [42], where pguess is
the probability that an observer with complete knowledge of
the inner workings of the devices has to guess the output b.

For k = 2, without loss of generality the two qubit prepa-
rations are given by Bloch vectors {�n0, �n1} in the xz plane
of the Bloch sphere, distributed symmetrically around the
z axis. From Lemma 1, we can focus on extremal ternary
POVMs P3 = {M1, M2, M3} such that all Bloch vectors are
in the the xz plane. Specifically, we consider POVMs of the
form Mb = λb

2 (12 + �σ · �ub), with
∑2

b=0 λb = 2,
∑2

b=0 λb�ub =
0, and λb � 0. Moreover, all Bloch vectors are of the form
�ub = (cos θb, 0, sin θb) with |�ub| = 1 (as the POVM is ex-
tremal).

Next, a maximization of the entropy Hmin is performed over
the free parameters θ1, θ2, and λ1, for different values of the
overlap δ. This is implemented as a heuristic optimization;
for each set of parameters, a lower bound on the entropy is
obtained via a semidefinite program, as in Ref. [17]. We find

FIG. 1. Plot of the output entropy Hmin as a function of the
overlap δ for k = 2, 3 preparations. In the limit of almost indistin-
guishable states δ → 1, the output entropy becomes asymptotically
maximal, i.e., Hmin = log2(3) for k = 2 and Hmin = log2(4) for k =
3. This shows that the bound of Theorem 1 can be attained in those
two cases.

that, when the two states become almost indistinguishable
(i.e., δ → 1), the entropy approaches Hmin = log2(3) (see
Fig. 1). This shows that the bound of Theorem 1 is tight in
this case. The optimal POVM can be parametrized as fol-
lows: θ1 = 0, λ2 = λ3 = λ θ2 = −θ3 = arccos( 1

λ
− 1), λ1 =

2(1 − λ), where

λ = 0.7323δ3 − 6.077δ2 + 4.017δ + 5.742

δ3 − 7.645δ2 + 4.903δ + 7.147
. (10)

For the case k = 3, Lemma 1 implies that one can focus on
extremal POVMs with all generalized Bloch vectors contained
in the space spanned by the three Bloch vectors of the prepa-
rations. As for k = 2, an optimization of the entropy Hmin

is performed over the free parameters describing the POVM.
Again, when the states become almost indistinguishable, the
entropy approaches Hmin = 2 (see Fig. 1).

It would be interesting to see whether the bound of Theo-
rem 1 is tight for any number of preparations k. For k > 3, the
above method becomes computationally challenging.

V. DISCUSSION

We presented an upper bound on the amount of random-
ness that can be certified in a black-box scenario. This bound
is given by the number of different quantum states that enter
the measurement device, irrespective of whether these states
are fully characterized, partially characterized, or uncharacter-
ized, and holds with and without classical or quantum side in-
formation. Hence, even when considering measurements with
a large number of outputs (or infinite as in CV systems), the
amount of certifiable randomness is still limited by the source,
specifically by the number of different preparations. The
number of preparations required scales exponentially with the
number of random bits to be certified per round. Thus, while
certifying a large number of random bits per round is in theory
possible, this would be challenging in practice. Indeed, in any
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experiment, the number of rounds is finite, which in turn limits
the number of possible different preparations (even more so
if good statistics is required). For instance, to certify ten
random bits per round, more than 103 different preparations
would be required (even without considering randomness
extraction).
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