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Multicopy uncertainty observable inducing a symplectic-invariant
uncertainty relation in position and momentum phase space
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We define an uncertainty observable acting on several replicas of a continuous-variable state, whose
measurement induces phase-space uncertainty relations for a single copy of the state. By exploiting the
Schwinger representation of angular momenta in terms of bosonic operators, this observable can be constructed
so as to be invariant under symplectic transformations (rotation and squeezing in phase space). We first design
a two-copy uncertainty observable, which is a discrete-spectrum operator vanishing with certainty if and only
if it is applied on (two replicas of) any pure Gaussian state centered at the origin. The non-negativity of its
variance translates into the Schrödinger-Robertson uncertainty relation. We then extend our construction to a
three-copy uncertainty observable, which exhibits additional invariance under displacements (translations in
phase space) so that it vanishes on every pure Gaussian state. The resulting invariance under all Gaussian
unitaries makes this observable a natural tool to capture the phase-space uncertainty (or the deviation from pure
Gaussianity) of continuous-variable bosonic states. In particular, it suggests that the Shannon entropy associated
with the measurement of this observable provides a symplectic-invariant entropic measure of uncertainty in
position-momentum phase space.
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I. INTRODUCTION

The seminal uncertainty relation due to Heisenberg [1] and
more precisely formulated by Kennard [2] states that

�x2�p2 � 1
4 , (1)

where �x2 and �p2 are the position and momentum variances
(h̄ = 1). The set of states that saturate this uncertainty relation
are all pure Gaussian states whose covariance vanishes, i.e.,
those that have no x-p correlation (see [3]). Other pure Gaus-
sian states are not minimum-uncertainty states according to
the measure implied by the left-hand side of the Heisenberg
relation (1) as a consequence of the fact that the latter is not
invariant under rotations in phase space. This problem was
solved by Schrödinger [4] and Robertson [5], who added an
anticommutator term giving rise to the uncertainty relation

det γ � 1
4 , (2)

with γ being the covariance matrix. Since this determinant
is invariant under symplectic transformations (rotation and
squeezing) as well as displacements (translations) [6], and
since it reduces to �x2�p2 for states with vanishing covari-
ance, the Schrödinger-Robertson relation (2) is saturated by
all pure Gaussian states, which form the set of minimum-
uncertainty states.

Variances, however, are not the only possible measure of
uncertainty. In information theory, a much preferred quantity
is the Shannon entropy. This measure can naturally also be
applied to expressing uncertainty relations. Bialynicki-Birula
and Mycielski [7] have indeed proven an entropic form of the

uncertainty relation for continuous variables x and p, namely,

h(x) + h(p) � ln(πe), (3)

where h(·) stands for the Shannon differential entropy

h(x) = −
∫

p(x) ln p(x)dx (4)

and p(x) is the probability density function of x. In some
sense, entropic uncertainty relations can be considered supe-
rior to variance-based uncertainty relations. For example, it is
possible to derive Eq. (1) from Eq. (3) (see [3]). The advent
of quantum information theory and the special role played
by entropies in this field also explains the renewed interest
in entropic uncertainty relations over the past decade (see,
e.g., [8–10] for recent reviews). Note that entropic uncertainty
relations can be formulated for discrete variables as well,
using the Shannon entropy

H (X ) = −
∑

i

pi ln pi, (5)

where pi is the probability of measuring the outcome xi. Here
the advantage over the Heisenberg or Schrödinger-Robertson
relation is the possibility to obtain a state-independent uncer-
tainty lower bound (see, e.g., [9]).

A main drawback of the entropic uncertainty relation of
Bialynicki-Birula and Mycielski is that its saturation is only
reached for pure Gaussian states with zero covariance. This
is because Eq. (3) is not invariant under rotations (or, more
generally, symplectic transformations), exactly like Eq. (1).
Recent progress has been made to define an entropic coun-
terpart to the Schrödinger-Robertson relation [3], but no
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symplectic-invariant uncertainty relation that is solely ex-
pressed in terms of entropies has been found as of today.
A possible, rather simple solution could be to consider the
canonical pair of rotated variables xθ = x cos θ + p sin θ and
pθ = −x sin θ + p cos θ , where θ is a rotation angle. Then one
could take the average or even the minimum over θ , giving,
respectively,

1

2π

∫ 2π

0
[h(xθ ) + h(pθ )]dθ � ln(πe) (6)

or

min
θ

[h(xθ ) + h(pθ )]dθ � ln(πe). (7)

This would apparently yield two variants of a symplectic-
invariant uncertainty relation based on entropies (the latter be-
ing clearly stronger than the former). However, the quantities
on the left-hand side of Eqs. (6) and (7) do not appear easily
tractable, so the problem remains arguably open to define
a useful entropic uncertainty relation that is invariant under
symplectic transformations.

In this paper we follow a path towards this goal consisting
of enforcing the invariance of the measured observable instead
of that of the uncertainty measure itself. We develop a frame-
work based on the Schwinger representation of angular mo-
menta in terms of bosonic annihilation and creation operators.
This enables us to define a multicopy uncertainty observable
with ingrained invariance under symplectic transformations in
phase space (or under all Gaussian unitaries in continuous-
variable state space). Then, measuring this observable allows
us to express alternative uncertainty relations which logically
have the appropriate invariance.

In Sec. II A we define a two-copy uncertainty observable
denoted by L̂z, which acts on two replicas of a bosonic
state and is isomorphic to the z component of an angular
momentum. We present its physical representation in Sec. II B
and complete it with the other two components L̂x and L̂y in
Sec. II C. The eigensystem of L̂z is then analyzed in Sec. II D,
where it is shown in particular that L̂z takes on (half-)integer
values from −n/2 to n/2 for an n-boson system. It is invariant
under symplectic transformations (rotation and squeezing)
and vanishes with probability one if and only if it is applied
to a Gaussian pure state that is centered at the origin in phase
space. Remarkably, expressing the condition that this discrete-
spectrum operator L̂z has a non-negative variance translates
into the Schrödinger-Robertson uncertainty relation based on
the covariance matrix γ for continuous variables x and p.
Then, in Sec. II E, we suggest that the Shannon entropy of
L̂z provides a relevant measure of uncertainty in phase space,
which we compare to the Shannon differential entropy of the
Wigner function in the special case of one-mode Gaussian
states in Sec. II F.

Section III deals with the fact that L̂z expresses an uncer-
tainty only if applied to states centered at the origin. To over-
come this limitation, we define in Secs. III A and III B a three-
copy uncertainty observable denoted by M̂, which exhibits
extra invariance under displacements (Weyl operators), and
hence admits all pure Gaussian states as minimum-uncertainty
states. The resulting invariance under all Gaussian unitaries
(rotation, squeezing, and displacement) makes this observable

M̂ a very natural measure of uncertainty in phase space (or
deviation from pure Gaussianity). Its spectrum is (one-half)
the spectrum of an angular momentum and, here too, the
non-negativity of its variance coincides with the Schrödinger-
Robertson uncertainty relation. The physical realization of
the measurement of M̂ is illustrated in Sec. III C. Then, in
Sec. III D, we derive a symplectic-invariant entropic uncer-
tainty relation based on the Shannon entropy of M̂. It is shown
that, for Gaussian states, the entropies of both multicopy
observables (L̂z and M̂) are equal. The case of non-Gaussian
states is also briefly discussed. We give our conclusions and
summarize in Sec. IV.

II. TWO-COPY UNCERTAINTY OBSERVABLE

A. Definition of L̂z

Let us gain intuition on how to define an uncertainty
observable. In some vague sense, we are looking for an
observable that could simultaneously access both x and p
quadratures.1 To make it more precise, we consider a two-
copy observable which is acting on two identical copies of
state |ψ〉. Defining |�〉 ≡ |ψ〉1 ⊗ |ψ〉2 as the joint state of
systems 1 and 2, we may simply consider the two-copy
observable Ô = x̂1 ⊗ p̂2. Its mean value gives

〈〈Ô〉〉� ≡ 〈�|Ô|�〉 = 〈ψ |x̂|ψ〉〈ψ | p̂|ψ〉. (8)

Here and throughout this paper we use the notation 〈〈Ô〉〉� =
〈ψ |〈ψ |Ô|ψ〉|ψ〉 to express the mean value for two identical
replicas of state |ψ〉. The second-order moment of Ô gives

〈〈Ô2〉〉� = 〈ψ |x̂2|ψ〉 〈ψ | p̂2|ψ〉. (9)

In the special case where the distributions of x and p are
centered on zero, 〈〈Ô2〉〉 thus gives access to the product
of variances �x2 �p2 in state |ψ〉, which is not accessible
with a single instance of the state. We may easily verify
that the observable Ô is invariant under a squeezing of the
x quadrature with parameter r, that is, under the symplectic
transformation

x̂ → x̂(r) = e−r x̂, p̂ → p̂(r) = er p̂. (10)

Indeed,

Ô(r) = x̂(r)
1 ⊗ p̂(r)

2 = x̂1 ⊗ p̂2 = Ô, (11)

so measuring Ô on a state |�〉 is insensitive to applying a prior
squeezing operation along the x (or p) quadrature on state |ψ〉.
However, this property does not extend to rotated states since
Ô is not rotation invariant.

To fix this problem, we may use instead of Ô the uncer-
tainty observable defined as the two-copy operator

L̂z = 1
2 (x̂1 ⊗ p̂2 − p̂1 ⊗ x̂2), (12)

where we use the index z to denote that it is the third
component (or z projection) of an angular momentum L̂.

1From now on, we consider the x and p variables to be the canon-
ically conjugate quadrature components of the electromagnetic field
and adopt this quantum optics nomenclature. Our results, however,
hold for any canonical pair of variables that is analogous to the
position-momentum pair.
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This definition can be motivated by taking a rotation-averaged
version of the above operator Ô. Indeed, using the symplectic
transformation for a rotation of angle θ ,

x̂(θ ) = x̂ cos θ + p̂ sin θ, p̂(θ ) = −x̂ sin θ + p̂ cos θ, (13)

we have

1

2π

∫ 2π

0
x̂(θ )

1 ⊗ p̂(θ )
2 dθ = 1

2
(x̂1 ⊗ p̂2 − p̂1 ⊗ x̂2). (14)

This observable is obviously invariant under rotations as well
as squeezing operations; hence it is invariant under the set of
all symplectic transformations.

The expectation value of L̂z vanishes for all states |�〉,
namely,

〈〈L̂z〉〉� = 1
2 (〈x̂〉ψ 〈p̂〉ψ − 〈p̂〉ψ 〈x̂〉ψ ) = 0. (15)

Its second-order moment gives

〈〈L̂ 2
z 〉〉� = 1

2 (〈x̂2〉ψ 〈p̂2〉ψ − 〈x̂ p̂〉ψ 〈p̂x̂〉ψ )

= 1
2

(〈x̂2〉ψ 〈p̂2〉ψ − 1
4 〈{x̂, p̂}〉2

ψ + 1
4 〈[x̂, p̂]〉2

ψ

)
= 1

2

(
detγc + 1

4 〈[x̂, p̂]〉2
ψ

)
, (16)

where we have used the fact that

〈x̂ p̂〉 = 1
2 (〈[x̂, p̂]〉 + 〈{x̂, p̂}〉),

(17)
〈p̂x̂〉 = 1

2 (〈−[x̂, p̂]〉 + 〈{x̂, p̂}〉).

In the last line of Eq. (16), γc represent the covariance matrix
of a state |ψ〉 centered at the origin in phase space and is
defined as

γc =
(

〈x̂2〉 1
2 〈{x̂, p̂}〉

1
2 〈{x̂, p̂}〉 〈p̂2〉

)
(18)

since 〈x̂〉 = 〈p̂〉 = 0. Thus, the variance of our two-copy
observable (�L̂z )2 = 〈〈L̂2

z 〉〉 − 〈〈L̂z〉〉2 = 〈〈L̂2
z 〉〉 is linked to the

determinant of the covariance matrix γc, namely,

(�L̂z )2 = 1
2 (det γc + 1

4 〈[x̂, p̂]〉2). (19)

Since a variance must be non-negative, we get

det γc � − 1
4 〈[x̂, p̂]〉2. (20)

If x and p are classical variables, their commutator van-
ishes and the symmetrization in the off-diagonal elements
of γc has no effect; hence Eq. (20) simply implies that a
classical covariance matrix is positive semidefinite. However,
if x̂ and p̂ are canonically conjugate quantum variables, they
do not commute ([x̂, p̂] = i) and Eq. (20) is nothing but the
Schrödinger-Robertson uncertainty relation det γ � 1

4 , where
γ denotes the usual covariance matrix of a state.2 From this
perspective, the Schrödinger-Robertson uncertainty relation
simply expresses the inequality 〈〈L̂ 2

z 〉〉 � 0, where we first
need to center the state before measuring L̂z. In some sense,
this inequality may be deemed trivial as it expresses the fact
that the variance of an operator is non-negative. However,

2Indeed, the covariance matrix γ as defined in Eq. (61) is invariant
under displacements, which means that det γ = det γc for a state
centered on the origin.

FIG. 1. Physical realization of a measurement of the two-copy
uncertainty observable L̂z. Starting from two identical copies of state
|ψ〉, we apply a π/2 phase rotation on the second mode and then
process the two modes via a 50:50 beam splitter. By measuring the
photon-number difference of the output state, we access L̂z. The
outcome is zero if and only if |ψ〉 is a minimum-uncertainty state
(Gaussian pure state centered on the origin in phase space).

its equivalence with the Schrödinger-Robertson uncertainty
relation suggests an alternate formulation of the uncertainty
relation in terms of the entropy of L̂z, as analyzed in Sec. II E.

B. Physical realization of L̂z

Let us give a physical interpretation to the two-copy
uncertainty observable L̂z. By using the mode operators
â j = (x̂ j + i p̂ j )/

√
2 for j = 1, 2, we may rewrite it as

L̂z = i

2
(â1â†

2 − â†
1â2). (21)

From this definition it is easy to confirm that the action
of L̂z gives 0 on any pure Gaussian state centered on the
origin, i.e., any squeezed vacuum state. Let |s〉 = S(s)|0〉
denote a squeezed vacuum state, where |0〉 is the vacuum
state and S(s) = e(s∗â2−sâ†2 )/2 is the squeezing operator with
the parameter s = reiφ . Using â|0〉 = 0 ⇔ S(s)âS†(s)|s〉 = 0
⇔ [cosh(r)â + eiφ sinh(r)â†]|s〉 = 0, we see that |s〉 satisfies
â|s〉 = −eiφ tanh(r)â†|s〉. Therefore,

L̂z|s〉|s〉 = i

2
(â1â†

2 − â†
1â2)|s〉|s〉

= i

2
{[−eiφ tanh(r)â†

1]â†
2 − â†

1[−eiφ tanh(r)â†
2]}|s〉|s〉

= 0. (22)

More interestingly, this formulation of L̂z provides us with
a nice physical interpretation of the uncertainty observable in
terms of a beam-splitter transformation. As shown in Fig. 1,
if we make a π/2 phase rotation on the second mode, â2 →
â′

2 = −iâ2, followed by a 50:50 beam-splitter transformation
of the two modes according to

â1 → b̂1 = (â1 + â′
2)/

√
2, â′

2 → b̂2 = (â1 − â′
2)/

√
2,

(23)

we may reexpress the uncertainty observable as

L̂z = 1
2 (b̂†

1b̂1 − b̂†
2b̂2), (24)

where b̂1 and b̂2 denote the output mode operators. Thus, L̂z

corresponds (up to a factor 1
2 ) to the difference between the

photon numbers at the two output modes of the beam splitter,
that is, L̂z = (n̂out

1 − n̂out
2 )/2.
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Recall that a two-mode squeezed vacuum state can be
realized with two single-mode squeezed vacuum states with
orthogonal squeezing orientations followed by a 50:50 beam
splitter. Thus, if we start with two identical replicas of an
arbitrary squeezed vacuum state |s〉|s〉 and rotate one of them
by an angle π/2 before processing both of them through a
50:50 beam splitter, we get precisely a two-mode squeezed
vacuum state. Such a state exhibits perfect photon-number
correlations since it is written as

∑
n cn|n〉|n〉, so measuring

the photon-number difference gives zero with certainty. This
is consistent with the fact that our observable L̂z gives a value
0 and exhibits no uncertainty (zero variance) when applied to
any pure Gaussian state centered on the origin. We have thus
found a simple experimentally relevant method for measuring
the uncertainty of a state (or its deviation with respect to a
pure Gaussian state3).

C. Algebra of angular momenta (L̂x, L̂y, L̂z )

By exploiting the analogy with the algebra of angular
momenta, it is possible to define the two-copy operators
L̂x and L̂y, which in turn allows us to define the ladder
operators L̂+ and L̂−. The definition of (L̂x, L̂y, L̂z ) follows
from the Schwinger representation, which yields a connection
between an angular momentum and two uncoupled harmonic
oscillators (or bosonic modes) [11]. In quantum optics, it is
also linked to the definition of the Stokes operators in the
description of the polarization of light [12–14]. The easiest
way to proceed is to note that L̂z as defined in Eq. (21) can be
reexpressed as

L̂z = 1
2 Â†σyÂ, (25)

where Â = (
â1
â2

)
and σy = (

0 −i
i 0

)
is the second Pauli matrix.

Similarly, we can define

L̂y = 1
2 Â†σxÂ, L̂x = 1

2 Â†σzÂ, (26)

where σx = (
0 1
1 0

)
and σz = (

1 0
0 −1

)
are the other two Pauli

matrices. In terms of mode operators or quadrature operators,
this gives

L̂y = 1
2 (â†

1â2 + â1â†
2)

= 1
2 (x̂1x̂2 + p̂1 p̂2),

L̂x = 1
2 (â†

1â1 − â†
2â2)

= 1
4

[(
x̂2

1 + p̂2
1

) − (
x̂2

2 + p̂2
2

)]
= 1

2 (n̂1 − n̂2). (27)

Since the Pauli matrices respect the commutation relation
[σi, σ j] = 2iεi jkσk , where εi jk is the Levi-Cività symbol, it
can be verified that our three two-copy operators respect the
commutation relations for angular momenta (see Appendix A)

[L̂i, L̂ j] = iεi jk L̂k . (28)

3This method is limited to states centered at the origin in phase
space, but we will show in Sec. III how it can be generalized to all
states.

FIG. 2. Possible eigenvalues m of a state ‖l, m〉〉 with a total
photon number equal to 2l .

We can then define the ladder operators

L̂+ = L̂x + iL̂y = 1
2 (â†

1 + iâ†
2)(â1 + iâ2),

(29)
L̂− = L̂x − iL̂y = 1

2 (â†
1 − iâ†

2)(â1 − iâ2),

as well as the squared angular momentum operator

L̂2 = L̂2
x + L̂2

y + L̂2
z = L̂0(L̂0 + 1), (30)

where

L̂0 = 1
2 (â†

1â1 + â†
2â2) = 1

2 (n̂1 + n̂2) (31)

is the Casimir operator.
The definitions of L̂z given in Eqs. (21) and (24) also sug-

gest that all three angular momentum components (L̂x, L̂y, L̂z )
can be expressed in alternative ways as a function of the input
mode operators (â1, â2), output mode operators (b̂1, b̂2), or
even the output mode operators of another circuit (ĉ1, ĉ2).
This is summarized in Appendix B, together with the corre-
sponding physical realizations of (L̂x, L̂y, L̂z ).

D. Eigensystem of L̂z

In order to calculate the Shannon entropy of the uncertainty
observable L̂z, we need first to determine the eigensystem of
this operator. Defining l = (n1 + n2)/2, we see from Eqs. (30)
and (31) that the eigenvalues of L̂2 are given by l (l + 1),
just as the eigenvalues of the squared modulus of an angular
momentum. Thus, we may label the eigenvectors of L̂z and
L̂2 by ‖l, m〉〉, where l represents one-half of the total photon
number and m is the eigenvalue of L̂z (with |m| � l), so that

L̂z‖l, m〉〉 = m‖l, m〉〉,
L̂2‖l, m〉〉 = l (l + 1)‖l, m〉〉, (32)

L̂±‖l, m〉〉 =
√

l (l + 1) − m(m ± 1)‖l, m ± 1〉〉.
Given the commutation relations (28), the possible eigenval-
ues of L̂z for every value of l are m ∈ {−l, l} with integer
jumps4 as sketched in Fig. 2. The eigenvectors of L̂z and L̂2

4Indeed, [L̂z, L̂+] = L̂+ and thus L̂zL̂+‖l, m〉〉 =
(L̂+L̂z + L̂+)‖l, m〉〉 = (m + 1)L̂+‖l, m〉〉, where we assumed
that L̂z‖l, m〉〉 = m‖l, m〉〉.
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can be expressed, in general, as linear combinations of the
two-mode Fock states | j, k〉,

‖l, m〉〉 =
∑

j

∑
k

c jk| j, k〉. (33)

When fixing the value of l , the only nonzero c jk’s are of
course those such that j + k = 2l . Let us start with examples
for some specific values of l . If we set l = 0, the only
eigenvector is

‖0, 0〉〉 = |0, 0〉. (34)

If we set l = 1
2 , we have two eigenvectors with eigenvalues

m = ± 1
2 , namely,

‖ 1
2 ,− 1

2 〉〉 = 1√
2

(|0, 1〉 + i|1, 0〉),

(35)

‖ 1
2 , 1

2 〉〉 = 1√
2

(|0, 1〉 − i|1, 0〉).

If we set l = 1, we have three eigenvectors with eigenvalues
m = {−1, 0, 1}, namely,

‖1,−1〉〉 = 1

2
(|2, 0〉 − i

√
2|1, 1〉 − |0, 2〉),

‖1, 0〉〉 = 1√
2

(|2, 0〉 + |0, 2〉), (36)

‖1, 1〉〉 = 1

2
(|2, 0〉 + i

√
2|1, 1〉 − |0, 2〉).

For higher values of l , it becomes cumbersome to write
the general form of the eigenstates, but we can in principle
construct them by applying the ladder operator L̂+. We start
from the eigenstates corresponding to the lowest diagonal in
Fig. 2, that is, states ‖l,−l〉〉 whose (unnormalized) form is
defined as

‖l,−l〉〉 =

l−1/2�∑

k=0

ik

√(
2l

k

)
[|k, 2l − k〉 + (−1)ki2l |2l − k, k〉]

+ 1 + (−1)2l

2
il

√(
2l

l

)
|l, l〉. (37)

We simply need to apply repeatedly the operator L̂+ as defined
in Eq. (29) in order to find all other eigenstates, since

‖l, m + 1〉〉 = 1√
l (l + 1) − m(m + 1)

L̂+ ‖l, m〉〉. (38)

We thus have access to all eigenstates ‖l, m〉〉.
Returning to the interpretation of L̂z as an uncertainty

observable, let us discuss the special case of an even total
photon number, i.e., when l is an integer. In this case, there
is always an eigenstate that admits the eigenvalue m = 0. Its
general (unnormalized) form is

‖l, 0〉〉 = β
1 + (−1)l

2
|l, l〉

+

l/2−1/2�∑

i=0

αi(|2i, 2l − 2i〉 + |2l − 2i, 2i〉), (39)

with

αi =
√

(2l )!!(2l − 2i − 1)!!(2i − 1)!!

(2l − 2i)!!(2l − 1)!!(2i)!!
,

β =
√

(2l )!!(l − 1)!!(l − 1)!!

(l )!!(2l − 1)!!(l )!!
, (40)

where (·)!! denotes the double factorial and the index i is an
integer. This means that the states ‖l, 0〉〉 are thus written as
linear combinations involving only even Fock states of the
form |2 j, 2k〉. This is connected to the fact that a squeezed
vacuum state only involves even Fock states in its expansion.
Taking two copies of a squeezed vacuum state |s〉, namely,

|s〉 ⊗ |s〉 = 1

cosh r

∞∑
j,k=0

√
(2 j)!!(2k)!!

2 j+k j!k!
(tanh r)k+ j |2 j, 2k〉,

(41)
we get again a linear combination of even Fock states |2 j, 2k〉.
This implies that |s〉 ⊗ |s〉 can be expressed as a linear com-
bination of eigenstates ‖l, 0〉〉 (with l integer). Therefore,
applying L̂z on |s〉 ⊗ |s〉 gives zero, which confirms that all
squeezed vacuum states |s〉 are minimum-uncertainty states
for the uncertainty observable L̂z in accordance with Eq. (22).

Finally, let us mention an interesting symmetry property of
the eigenstates ‖l, m〉〉 with respect to the exchange operator
P̂, which exchanges the indices of the systems 1 and 2. This
operator can be seen as a reflection along the x1 = x2 line and
p1 = p2 line in phase space and it acts on L̂z, L̂y, and L̂x as

P̂L̂zP̂ = −L̂z, P̂L̂yP̂ = L̂y, P̂L̂xP̂ = −L̂x, (42)

where we used P̂† = P̂. Note also that P̂L̂±P̂ = −L̂∓. Hence,
we can evaluate the action of P̂ on the eigenstates of L̂z. Since
L̂z‖l, m〉〉 = m‖l, m〉〉 we have

−P̂L̂zP̂‖l, m〉〉 = m‖l, m〉〉
(43)

⇔ L̂zP̂‖l, m〉〉 = −mP̂‖l, m〉〉,
where we used P̂−1 = P̂. Thus, P̂‖l, m〉〉 is proportional to the
eigenstate of L̂z with eigenvalue −m, namely,

P̂‖l, m〉〉 ∝ ‖l,−m〉〉. (44)

Starting from eigenstate ‖l, m〉〉, we obtain the eigenstate
‖l,−m〉〉 simply by interchanging systems 1 and 2. From
Eq. (44) we also understand that the states ‖l, 0〉〉 must be
symmetric under the exchange of both systems, as can be
checked from Eq. (39).

E. Entropic uncertainty relation based on L̂z

We saw in Sec. II A that the non-negativity of the vari-
ance of our uncertainty observable L̂z coincides with the
Schrödinger-Robertson uncertainty relation (for states cen-
tered at the origin). We will now turn to the Shannon entropy
of L̂z and show that it provides a relevant symplectic-invariant
measure of uncertainty. Since we know the eigensystem of
L̂z (see Sec. II D), we can in principle compute its Shannon
entropy [as defined in Eq. (5)], that is,

H (L̂z )ρ = −
∑

m

pm ln pm, (45)
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where pm is the probability of measuring eigenvalue m (which
goes from −∞ to ∞ in steps of 1

2 ) when having two replicas
of state ρ, namely,

pm =
∞∑

l=|m|
〈〈l, m‖ρ ⊗ ρ‖l, m〉〉. (46)

The sum over l starts at l = |m| since −l � m � l and in-
cludes only integer (half-integer) values if m is an integer (a
half-integer).

Just like the variance, the Shannon entropy is a non-
negative quantity, so it is natural to write

H (L̂z )ρ � 0, (47)

which is the entropic counterpart of the Schrödinger-
Robertson uncertainty relation 〈〈L̂ 2

z 〉〉 � 0. It is saturated by all
pure Gaussian states (centered on the origin) and is invariant
under symplectic transformations, i.e., under any Gaussian
unitary except displacements.

Indeed, suppose we apply U ⊗ U on an eigenstate ‖l, m〉〉,
where U is such a Gaussian unitary. Since L̂z is invariant under
U , i.e., U † ⊗ U † L̂z U ⊗ U = L̂z, we have

L̂z U ⊗ U‖l, m〉〉 = m U ⊗ U‖l, m〉〉, (48)

so U ⊗ U‖l, m〉〉 is an eigenvector of L̂z with the same eigen-
value m. Thus, the eigenspace spanned by all states with
eigenvalue m is invariant under U ⊗ U . Hence, the projector
associated with the measurement of outcome m,

Pm =
∞∑

l=|m|
‖l, m〉〉〈〈l, m‖, (49)

is invariant under U ⊗ U , and so is the probability of measur-
ing m, namely, pm = Tr(ρ ⊗ ρ Pm). Therefore, the Shannon
entropy H (L̂z )ρ is invariant under symplectic transformations,
as advertised.

F. Special case of Gaussian states

Although it should be easy to measure L̂z experimentally
(with the circuit in Fig. 1) and then compute its Shannon
entropy, it does not seem straightforward to calculate H (L̂z )
analytically for a given state |ψ〉 because one needs first
to express ‖�〉〉 as a linear combination of the eigenstates
‖l, m〉〉. The calculation of H (L̂z ) for some simple examples
of non-Gaussian states is illustrated in Appendix C. However,
this calculation does not require much effort in the special
case of Gaussian states (centered on the origin). Beforehand,
recall that, according to Williamson theorem, every Gaussian
state can be brought to a thermal state by applying some
Gaussian unitary [6]. Since H (L̂z ) is invariant under Gaussian
unitaries,5 it is enough to compute its value for a thermal
state (it is then the same for any Gaussian state with the
same symplectic spectrum). Luckily, it is straightforward to

5We only consider Gaussian states centered at the origin, which can
be brought to a thermal state by applying a symplectic transformation
(no displacement is needed), so the invariance of H (L̂z ) holds.

FIG. 3. Graph of E (〈n〉).

evaluate H (L̂z ) for a thermal state

ρth =
∞∑

n=0

〈n〉n

(〈n〉 + 1)n+1
|n〉〈n| (50)

because when inserting ρth ⊗ ρth in the circuit of Fig. 1,
measuring L̂z simply corresponds to measuring the difference
between the photon numbers at the two outputs, d̂ = (n̂out

1 −
n̂out

2 )/2. Since a thermal state is invariant under rotation in
phase space, the second mode remains in state ρth after the
π/2 rotation shown in Fig. 1. Moreover, when two copies
of a thermal state are inserted in a beam splitter, the output
is again the product of the same two thermal states. The
random variable d is just the difference of two independent
(geometrically distributed) random variables. The probability
of measuring ni photons on the ith output mode is

P(n̂i = ni ) = 〈n〉ni

(〈n〉 + 1)ni+1
, i = 1, 2, (51)

so the probability of obtaining a certain value for the (half)
difference d is

P(d̂ = d ) =

⎧⎪⎪⎨
⎪⎪⎩

∑∞
n2=0 P(n̂1 = n2 + 2d )P(n̂2 = n2), d > 0∑∞
n1=0 P(n̂1 = n1)P(n̂2 = n1 − 2d ), d < 0∑∞
n1=0 P(n̂1 = n1)P(n̂2 = n1), d = 0.

(52)
This yields

P(d̂ = d ) = 1

2〈n〉 + 1

( 〈n〉
〈n〉 + 1

)2d

, ∀ d. (53)

We can now compute the Shannon entropy of L̂z as

H (L̂z )ρth = −
∑

d

P(d̂ = d ) ln P(d̂ = d )

= ln(2〈n〉 + 1) + E (〈n〉), (54)

where

E (〈n〉) = −2〈n〉(〈n〉 + 1)

2〈n〉 + 1
ln

〈n〉
〈n〉 + 1

(55)

is a function ranging between 0 and 1, as plotted in Fig. 3.
Note that d can be an integer or a half-integer in Eq. (53)
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and this must be taken into account when summing over d
in Eq. (54).

Interestingly, if we compute the Shannon differential en-
tropy6 h(x, p) of a thermal state with the Wigner function

Wρth = 1

2π
√

det γ
exp

[
−1

2
(x p)T γ −1

(
x

p

)]

= 1

π (2〈n〉 + 1)
exp

(
− 1

2〈n〉 + 1
(x2 + p2)

)
, (56)

we find

h(x, p)ρth = −
∫

Wρth (x, p) ln Wρth (x, p)dx d p

= ln(πe) + ln(2〈n〉 + 1) (57)

which implies that

H (L̂z )ρth = h(x, p)ρth − ln(πe) + E (〈n〉). (58)

This expression is interesting as it combines the Shannon
entropy of our discrete uncertainty observable L̂z with the
Shannon differential entropy of two continuous variables x
and p. The first term on the right-hand side of Eq. (57) is
the Shannon differential entropy of the Wigner function for
the vacuum state h(x, p)ρvac = ln(πe), so Eq. (58) implies that
H (L̂z )ρth is close to h(x, p)ρth − h(x, p)ρvac within a range of
0 � E (〈n〉) � 1. This is a way of understanding Eq. (47) as
an entropic uncertainty relation, measuring the distance from
a pure Gaussian state (here the vacuum state).

To be complete, let us also express the above entropies
in terms of the symplectic value ν, so this applies to any
Gaussian state ρG. Using the fact that 〈n〉 = ν − 1

2 for thermal
states, we get

H (L̂z )ρG = ln(2ν) − 4ν2 − 1

4ν
ln

2ν − 1

2ν + 1
, (59)

h(x, p)ρG = ln(πe) + ln(2ν). (60)

Note that H (L̂z )ρG is monotonically increasing in ν. The
only thermal state that has H (L̂z ) = 0 is the vacuum state
(considering states centered on the origin). Equivalently, all
pure Gaussian states (ν = 1

2 ) saturate our entropic uncertainty
relation (47), and the quantity H (L̂z ) can be seen as a measure
of pure non-Gaussianity. Finally, if we only consider Gaussian
states, H (L̂z ) as defined in Eq. (59) may also be understood as
a measure of mixedness since the purity of a Gaussian state is
given by μ = Trρ2

G = 1
2ν.

III. THREE-COPY UNCERTAINTY OBSERVABLE

A. Definition of M̂

The two-copy operator L̂z expresses the uncertainty solely
for states centered at the origin. To overcome this limitation,
we define a three-copy uncertainty observable, denoted by M̂
in the following. The intuition comes from Ref. [15], where it

6Since a thermal state has a positive Wigner function, its Shannon
differential entropy is simply the classical entropy of the joint prob-
ability distribution of (x, p) given by the Wigner function.

is shown that any nth-degree polynomial function of the ele-
ments of a single-copy density matrix ρ can be computed as
the expectation value of some well-chosen n-copy observable
acting on ρ⊗n.

We define the covariance matrix γ for any state, not
necessarily centered on 0, as

γ =
(

〈x2〉 − 〈x〉2 1
2 〈{x, p}〉 − 〈x〉〈p〉

1
2 〈{x, p}〉 − 〈x〉〈p〉 〈p2〉 − 〈p〉2

)
. (61)

This definition is valid for both classical and quantum vari-
ables. If we compute its determinant, we then have

det γ = 〈x2〉〈p2〉 − 〈x2〉〈p〉〈p〉 − 〈p2〉〈x〉〈x〉
− 1

4 〈{x, p}〉2 + 〈{x, p}〉〈x〉〈p〉. (62)

From Ref. [15] we thus know that this expression must in prin-
ciple be writable as the expectation value of some four-copy
observable. Here we will show that a three-copy observable
M̂ is actually sufficient if we consider its variance (rather than
its expectation value) and follow a similar procedure as for
the two-copy observable L̂z. As we have seen, the latter is
the z component of an angular momentum in the Schwinger
representation, but the other two components L̂x and L̂y are
not linked to uncertainty. In contrast, here we treat the three
components M̂i of an angular momentum on an equal footing
and define7

M̂x = 1
2 (x̂2 p̂3 − p̂2x̂3),

M̂y = 1
2 (x̂3 p̂1 − p̂3x̂1), (63)

M̂z = 1
2 (x̂1 p̂2 − p̂1x̂2).

The three-copy uncertainty observable reads

M̂ = 1√
3

(M̂x + M̂y + M̂z ) (64)

and can be viewed as the projection of the angular momentum
M̂ onto a line halfway between the x, y, and z axes. Since
the two-copy observable L̂z is invariant under symplectic
transformations (rotations and squeezing), so are all the M̂i

observables since they have the same form as L̂z acting on two
of the three copies. Hence, the three-copy observable M̂ is also
invariant under symplectic transformations. Furthermore, M̂
is this time also invariant under displacements. Indeed, since
we consider three copies of the same state, the displacement
is the same in each of the three modes. In other words, the
displacement in position x (or momentum p) is always applied
in the direction ( 1√

3
, 1√

3
, 1√

3
), which is exactly the direction of

the angular momentum component M̂. Since the projection of
an angular momentum along a direction is invariant under a
position shift (or a momentum kick) in that direction, M̂ is
invariant under displacements, so we have relaxed the need to
restrict to states centered at the origin.

Interestingly, the variance of M̂ can be related to the
determinant of the covariance matrix γ exactly as we had done
for L̂z in Sec. II A. First, we remark that 〈〈〈M̂〉〉〉� = 0, where

7To be consistent with the definition of the two-copy observable,
we nevertheless introduce a factor of 1

2 . This ensures that M̂z = L̂z.
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〈〈〈M̂〉〉〉� stands for the expectation value on three copies of
state |ψ〉. Indeed,

〈〈〈M̂x〉〉〉� = 1
2 〈ψ |〈ψ |〈ψ |M̂x|ψ〉|ψ〉|ψ〉

= 1
2 (〈x〉〈p〉 − 〈p〉〈x〉) = 0 (65)

and similarly for 〈〈〈M̂y〉〉〉� and 〈〈〈M̂z〉〉〉� . The variance of M̂ is
thus equal to its second-order moment, which is computed in
Appendix D. We obtain

(�M̂ )2 = 〈〈〈M̂2〉〉〉
= 1

3 〈〈〈(My + Mx + Mz )2〉〉〉
= 1

2 〈x2〉〈p2〉 − 1
2 〈x2〉〈p〉〈p〉 − 1

2 〈p2〉〈x〉〈x〉
+ 1

2 〈{x, p}〉〈x〉〈p〉 − 1
8 〈{x, p}〉2 + 1

8 〈[x, p]〉2

= 1
2

(
det γ + 1

4 〈[x, p]〉2
)
, (66)

so the variance of M̂ is related to the determinant of the
covariance matrix, in analogy with Eq. (19). Once again, since
a variance is non-negative, we deduce that

det γ � − 1
4 〈[x, p]〉2. (67)

If x and p are classical, they commute and Eq. (67) expresses
that a covariance matrix is always positive semidefinite. In
contrast, if x and p are canonically conjugate quantum vari-
ables, they do not commute ([x, p] = i) and Eq. (67) implies
det γ � 1

4 , which is the Schrödinger-Robertson relation. This
suggests that the three-copy operator M̂ is a good uncertainty
observable, which is invariant under all Gaussian unitaries (in-
cluding displacements this time). It gives zero with certainty
for all Gaussian pure states (regardless of the mean values of
x and p). We define an entropic uncertainty relation based on
the Shannon entropy of this observable

H (M̂ )ρ � 0. (68)

As before, to compute the Shannon entropy of M̂, we need
to know its eigenvectors and evaluate the associated mea-
surement probabilities. Since M̂ = (M̂x + M̂y + M̂z )/

√
3 is

the component of an angular momentum in the direction
( 1√

3
, 1√

3
, 1√

3
), its eigenspectrum is well known. More pre-

cisely, the eigenvalues of M̂2
x + M̂2

y + M̂2
z and M̂ are given,

respectively, by

l∗ = 0, m = 0,

l∗ = 1
2 , m = {− 1

2 , 0, 1
2

}
,

l∗ = 1, m = {−1,− 1
2 , 0, 1

2 , 1
}
, (69)

etc. We do not denote the squared angular momentum operator
M̂2

x + M̂2
y + M̂2

z simply as M̂2 here in order to avoid confusion
with the square of our uncertainty observable M̂ (which is a
component on the angular momentum in a specific direction).
Comparing to a genuine angular momentum, the eigenvalues
are all divided by 2 because of the definition of the M̂i [see
Eq. (63)]. Moreover, the step between two subsequent eigen-
values is 1

2 instead of 1 because the commutation relations
are [M̂i, M̂ j] = i

2εi jkM̂k (while it is [L̂i, L̂ j] = iεi jk L̂k for a
genuine angular momentum). The eigenfunctions of M̂ are
simply the spherical harmonics in the quadrature variables

FIG. 4. Physical realization of a measurement of the three-copy
uncertainty observable M̂. Starting from three identical copies of
state |ψ〉, we first apply two beam splitters (on modes 1 and 2 with
transmittance 1

2 and then on modes 1 and 3 with transmittance 2
3 ).

This effects a rotation in phase space such that M̂ is rotated towards
M̂x , which is measured by the second part of the circuit consisting
of a π/2 rotation and a 50:50 beam splitter. By measuring the
photon-number difference of modes 2 and 3, we thus access M̂. The
outcome is zero if and only if |ψ〉 is a minimum-uncertainty state
(Gaussian pure state regardless of its position in phase space).

(x1, x2, x3), but this form is not very convenient since they
must be written in a rotated basis. Computing the probabilities
of measuring the eigenvalues of M̂ through the spherical
harmonics does not seem to be an easy task, so we find it more
suitable to use the physical realization of M̂ (see Sec. III C).

B. Alternative definitions

Using the relations between the x, p quadratures and the
mode operators, we can express the three angular momentum
components as

M̂x = i

2
(â2â†

3 − â†
2â3),

M̂y = i

2
(â3â†

1 − â†
3â1), (70)

M̂z = i

2
(â1â†

2 − â†
1â2).

This also allows us to express the squared angular momentum
operator as

M̂2
x + M̂2

y + M̂2
z = 1

4

[
(n̂1 + n̂2 + n̂3)(n̂1 + n̂2 + n̂3 + 1)

− (
â†2

1 + â†2
2 + â†2

3

)(
â2

1 + â2
2 + â2

3

)]
, (71)

where n̂i = â†
i âi. It is symmetric in the modes, but does not

have the usual l (l + 1) form as we had found for L̂2 in
Eq. (30). Note also that the three components M̂x, M̂y, and
M̂z can be written in terms of Gell-Mann matrices, which
generalize the Pauli matrices in 3 × 3 dimensions. This makes
the counterpart to Eqs. (25) and (26) (see Appendix E).

C. Physical realization of M̂

We show in Fig. 4 an optical circuit that allows us to mea-
sure the three-copy uncertainty observable M̂. It is similar to
the circuit for the two-copy observable L̂z in the sense that, in
the last stage of the circuit, we apply a π/2 rotation followed
by a 50:50 beam splitter and then compute the difference
between the output photon numbers. If the circuit was limited
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to this last stage, the photon-number difference on modes 2
and 3 would yield M̂x, in accordance with the first of Eqs. (70),
which is analogous to Eq. (21). However, this transformation
is preceded by two beam splitters of transmittance 1

2 (on
modes 1 and 2) and 2

3 (on modes 1 and 3). The effect of these
beam splitters is to make the appropriate rotation in phase
space so that the direction ( 1√

3
, 1√

3
, 1√

3
) is turned to (1,0,0),

that is, the x direction. Indeed, after applying the two beam
splitters, the mode operators are given by

â′
1 = 1√

3
(â1 + â2 + â3),

â′
2 = 1√

2
(â1 − â2), (72)

â′
3 = 1√

6
(â1 + â2 − 2â3).

In particular, the first mode operator becomes the sum of the
three input mode operators. This means that measuring the x-
component angular momentum M̂x after this rotation (i.e., on
modes â′

1, â′
2, and â′

3) yields the value of (M̂x + M̂y + M̂z )/
√

3
before the rotation, which is precisely the desired uncertainty
observable M̂. Therefore, keeping in mind the analogy with
the two-copy observable L̂z, we can access M̂ simply by
applying a π/2 rotation followed by a 50:50 beam splitter on
modes 2 and 3. The output photon-number difference yields

M̂ = 1

2

(
n̂out

2 − n̂out
3

) = i

2
(â′

2â′†
3 − â′†

2 â′
3). (73)

Interestingly, the invariance of M̂ under displacements is
easy to understand from the circuit of Fig. 4. Let us insert a
displacement D(α) on each input state of the circuit. After the
first two beam splitters, the displacement on the three modes
becomes

D(α)⊗3 → D(
√

3α)D(0)D(0). (74)

Hence, regardless of the value of α, the displacement is zero
on modes 2 and 3 just at the point where we apply the π/2
rotation and the last beam splitter. Therefore, the result of
the measurement of the photon-number difference between
modes 2 and 3 at the end of the circuit, which gives M̂, does
not depend on the displacement.

Note that we still have a degree of freedom in the state
obtained after applying the two first beam splitters in Fig. 4.
Indeed, we can easily verify that applying any real rotation
in phase space between modes 2 and 3, i.e., inserting a beam
splitter coupling these modes just before the second part of
the circuit, does not affect Mx; hence it does not change the
measured value of M̂. This is related to the fact that M̂x

is invariant under a real rotation between systems 2 and 3.
Indeed, if we define

x̂′
2 = cos θ x̂2 + sin θ x̂3, x̂′

3 = − sin θ x̂2 + cos θ x̂3, (75)

and similarly for the p quadratures, we can easily show that

M̂ ′
x = 1

2 (x̂′
2 p̂′

3 − p̂′
2x̂′

3) = 1
2 (x̂2 p̂3 − p̂2x̂3) = M̂x. (76)

D. Entropic uncertainty relation based on M̂

It is easy to verify that our three-copy uncertainty ob-
servable vanishes on any pure Gaussian state, i.e., squeezed
coherent state. If we insert three copies of a squeezed coherent
state in the optical circuit of Fig. 4, we obtain after the first
two beam splitters the same three squeezed coherent states
(albeit with changed mean values, as explained earlier).8 This
means that, similarly to the two-copy case, we get a zero
photon-number difference with probability one at the output
of the circuit. Consequently, the entropy of M̂ is equal to zero
for any pure Gaussian state. Our entropic uncertainty relation
H (M̂ ) � 0 thus admits the exact same set of minimum-
uncertainty states as the Schrödinger-Robertson uncertainty
relation.

Furthermore, it appears that the entropic uncertainty rela-
tion based on M̂ coincides with the one based on L̂z in the
special case of Gaussian states centered at the origin. Indeed,
if we plug in three copies of an arbitrary Gaussian state, pure
or mixed, at the input of the circuit of Fig. 4, we again get the
same three Gaussian states after the first two beam splitters
(albeit with changed mean values). In particular, we find two
copies of the input Gaussian state on modes 2 and 3 (albeit
centered on the origin). Since the rest of the circuit is the same
as the two-copy circuit of Fig. 1, all conclusions we had drawn
for L̂z hold for M̂ too. In particular, the entropy of a Gaussian
state will be the same, namely,

H (M̂ )ρG = H (L̂z )ρG , (77)

with H (L̂z )ρG defined in Eq. (59).
In the case of non-Gaussian states centered at the origin,

however, we expect the entropy H (M̂ ) to deviate from H (L̂z ),
so it seems relevant to define a distinct entropic uncertainty
relation H (M̂ ) � 0. For example, if we insert three copies of
Fock state |1〉 in the circuit of Fig. 4, the state of modes 2 and
3 differs from |1〉⊗2 after the first two beam splitters, so the
second part of the circuit acts differently. Hence, the entropy
of the three-copy observable H (M̂ )|1〉 differs from that of the
two-copy observable H (L̂z )|1〉 (as computed in Appendix C).

IV. CONCLUSION

We have paved the way towards the construction of en-
tropic uncertainty relations for continuous-variable bosonic
states that are invariant under Gaussian unitary transforma-
tions (rotation, squeezing, and displacement in phase space).
This was achieved by defining the notion of a multicopy
uncertainty observable (especially a two-copy observable L̂z

and a three-copy observable M̂) with ingrained invariance,
building on the Schwinger representation of angular momenta
in terms of bosonic operators. Observable L̂z acts on two
replicas of a continuous-variable state and is invariant under
rotation and squeezing (so it is relevant for states centered on
the origin only), while M̂ acts on three replicas and exhibits
extra invariance under displacement (so it is relevant for

8If the product of two identical Gaussian states impinges on a beam
splitter, we obtain at the output a product of two Gaussian states with
the same covariance matrix (only the mean values are changed).
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any state). Expressing the non-negativity of the variance of
both (discrete-spectrum) observables L̂z and M̂ leads to the
Schrödinger-Robertson uncertainty relation, which supports
the fact that these observables capture uncertainty in phase
space (or the deviation from pure Gaussianity). Based on
this, we have constructed two entropic uncertainty relations
by expressing the fact that the Shannon entropy of L̂z and
M̂ must be non-negative for any physical state. Given the
intrinsic invariance of L̂z and M̂, these entropic uncertainty
relations are automatically invariant under Gaussian unitaries
and are saturated by all pure Gaussian states (with L̂z being
restricted to states centered on the origin). In some sense, they
can be viewed as the entropic counterpart to the Schrödinger-
Robertson uncertainty relation.

Although such a Gaussian invariance is not strictly nec-
essary for a measure of uncertainty to be meaningful, if the
purpose is to define a measure of uncertainty in phase space
rather than a function merely relating the uncertainties of
variables x and p, it is natural to require this measure to be
invariant under symplectic transformations, which leave the
volume in phase space invariant. Remarkably, it is the angular
momentum algebra of the uncertainty observables L̂z and M̂
that ensures this invariance in our construction.

We have described optical circuits enabling us to measure
the observable L̂z (M̂) starting from two (three) replicas of
the input state. From an experimental perspective, measuring
these observables requires the preparation of two (three) iden-
tical replicas of an optical state, followed by a linear-optics
circuit combining them in order to achieve a specific joint
measurement. Thus, the identical optical states should be gen-
erated from the same laser (to share the same phase reference)
and interferometric stability should be ensured in the optical
circuit up to the final measurement of the photon-number dif-
ference. The complexity of such a setup is comparable to that
of various current experiments on multiphoton interference
effects in multimode circuits (in particular those based on inte-
grated photonic chips; see, e.g., [16]), so it seems reasonable
to access the uncertainty L̂z or M̂ of a state in x-p space, at
least when dealing with the optical analogs of x and p.

Regardless of the experimental feasibility of measuring
observable L̂z or M̂, the sole theoretical definition of these
optical circuits proved to be useful in deriving a closed for-
mula for the Shannon entropy H (L̂z ) or H (M̂ ) in the special
case of Gaussian states (both entropies coincide in that case).
However, we have not found a simple method to compute
these entropies for non-Gaussian states, which we leave as a
topic for further study. Another problem that we leave open
is to find an operational meaning for H (L̂z ) and H (M̂ ), which
would help in interpreting physically the associated entropic
uncertainty relations. It is fascinating that the Shannon en-
tropy of a (discrete-spectrum) angular momentum observable
such as L̂z or M̂ can be connected to the differential entropy
of the Wigner function in (continuous-variable) x-p space, at
least for Gaussian states.

Furthermore, an interesting issue raised by this work is to
elucidate the reason why three replicas seem to be necessary
to build an uncertainty observable that possesses the de-
sired invariance. Since the left-hand side of the Schrödinger-
Robertson relation is quartic in the position-momentum
variables, the variance of a two-copy observable might have

been sufficient (assuming the observable is linear in the
quadrature variables of each copy) and it is unclear why we
had to consider the variance of a three-copy observable instead
(this could in principle give access to sixth-order moments
in x and p). Conversely, a four-copy observable may also
have been considered, where some constraint on its mean
(e.g., the observable must be positive semidefinite) instead
of its variance would induce an uncertainty relation. More
generally, a valuable extension of this work would be to
investigate general multicopy uncertainty observables.
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APPENDIX A: CALCULATION OF THE COMMUTATOR
BETWEEN L̂x AND L̂y

Let us show that the two-copy operators L̂x, L̂y, and L̂z

obey the commutation relations for angular momenta. As an
example, we calculate the commutator between L̂x and L̂y

using the properties of Pauli matrices, namely,

[L̂x, L̂y] = 1
4 [A†σzA, A†σxA]

= 1
4 A†(σzAA†σx − σxAA†σz )A. (A1)

where Â = (
â1
â2

)
. We can easily compute

AA† = (L̂0 + 1)1 + L̂yσx + L̂zσy + L̂xσz, (A2)

where

L̂0 = â†
1â1 + â†

2â2

2
= 1

2
A†A, (A3)

so the commutator becomes

[L̂x, L̂y] = 1

4
A†{σz[(L̂0 + 1)1 + L̂yσx + L̂zσy + L̂xσz]σx

− σx[(L̂0 + 1)1 + L̂yσx + L̂zσy + L̂xσz]σz}A

= 1

4
A†{(L̂0 + 1)[σz, σx] − 2iL̂z}A

= i

2
A†[(L̂0 + 1)σy − L̂z]A

= i

2
A†[( 1

2 A†A + 1
)
σy − 1

2 A†σyA
]
A

= i

2
A†σyA + i

4
[A†(A†A)σyA − A†(A†σyA)A]

= iL̂z + i

4
[A†(A†A)σyA − A†(A†σyA)A]. (A4)

Now we just need to show that the last term in this ex-
pression is equal to zero. However, the calculation is not
straightforward because the matrices do not all have consistent
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FIG. 5. Physical realization of a measurement of L̂z (upper cir-
cuit) and L̂y (lower circuit) starting from two identical copies of state
|ψ〉. The input mode operators (â1 and â2) are transformed into the
output mode operators (b̂1 and b̂2) in the upper circuit, consisting
in a π/2 phase rotation followed by a 50:50 beam splitter. The
photon-number difference yields L̂z. Interchanging the π/2 phase
rotation and 50:50 beam splitter leads to the output mode operators
(ĉ1 and ĉ2) in the lower circuit, so the photon-number difference
yields L̂y. The input photon-number difference simply yields L̂x .

dimensions for multiplication.9 Nevertheless, we can prove
that

A†M(A†A)NA =
∑
i jk

â†
i Mi j

(∑
l

â†
l âl

)
Njkâk

=
∑

l

â†
l

⎛
⎝∑

i jk

â†
i Mi jNjkâk

⎞
⎠âl

= A†(A†MNA)A, (A5)

where the objects inside the parentheses have the dimension
of a scalar and the matrices M and N are composed of scalar
numbers, so they commute with the mode operators. If we
define M = 1 and N = σy, we have

A†(A†A)σyA − A†(A†σyA)A = 0, (A6)

which completes the calculation of the commutator

[L̂x, L̂y] = iL̂z. (A7)

The other commutators can be calculated similarly.

APPENDIX B: ALTERNATIVE DEFINITIONS OF (L̂x, L̂y, L̂z )

The angular momentum components L̂x, L̂y, and L̂z can be
expressed in several ways as a function of the input mode
operators (â1, â2) or output mode operators (b̂1, b̂2) of the
circuit depicted in Fig. 1, or even the output mode operators

9The matrix multiplication is associative only if we multiply matri-
ces of dimensions n × m, m × p, and p × q.

TABLE I. All possible definitions of the operators L̂x , L̂y, and
L̂z in terms of the mode operators (â1, â2), (b̂1, b̂2), and (ĉ1, ĉ2 ) and
quadrature operators (x̂, p̂).

L̂x L̂y L̂z

x̂, p̂
(x̂2

1+ p̂2
1 )−(x̂2

2+ p̂2
2 )

4
1
2 (x̂1x̂2 + p̂1 p̂2) 1

2 (x̂1 p̂2 − p̂1x̂2)

â, â† 1
2 (â†

1â1 − â†
2â2) 1

2 (â†
1â2 + â1â†

2 ) i
2 (â1â†

2 − â†
1â2)

b̂, b̂† 1
2 (b̂1b̂†

2 + b̂†
1b̂2) i

2 (b̂1b̂†
2 − b̂†

1b̂2) 1
2 (b̂†

1b̂1 − b̂†
2b̂2)

ĉ, ĉ† i
2 (ĉ1ĉ†

2 − ĉ†
1ĉ2) 1

2 (ĉ†
1ĉ1 − ĉ†

2 ĉ2) 1
2 (ĉ1ĉ†

2 + ĉ†
1 ĉ2)

(ĉ1, ĉ2) of another circuit. This is explained in Fig. 5, where
the first circuit is the same as in Fig. 1. In the second circuit
shown in Fig. 5, the π/2 phase rotation is applied after
the 50:50 beam splitter transformation, and the output mode
operators are labeled as ĉ1 and ĉ2. The mode operators evolve
as

â1 → ĉ′
1 = (â1 + â2)/

√
2, â2 → ĉ2 = (â1 − â2)/

√
2,

ĉ′
1 → ĉ1 = −iĉ′

1. (B1)

Let us show that the operators L̂x, L̂y and L̂z can equiva-
lently be expressed in terms of the â, b̂, or ĉ mode operators.
In terms of the mode operator â, the expressions are given by
Eqs. (21) and (27). Using the first circuit, we already showed
that L̂z corresponds to one-half the photon-number difference
of the output modes [see Eq. (24)], and it is easy to show that

L̂x = 1

2
(b̂1b̂†

2 + b̂†
1b̂2), L̂y = i

2
(b̂1b̂†

2 − b̂†
1b̂2). (B2)

Based on the second circuit, we can do similar calculations
to express L̂x, L̂y, and L̂z in terms of the mode operators ĉ.
The results are summarized in Table I, which also exhibits
the expressions of L̂x, L̂y and L̂z in terms of the quadrature
operators (first row). Moreover, we have

L̂z = 1
2 Â†σyÂ = 1

2 B̂†σzB̂ = 1
2Ĉ†σxĈ

L̂y = 1
2 Â†σxÂ = 1

2 B̂†σyB̂ = 1
2Ĉ†σzĈ

L̂x = 1
2 Â†σzÂ = 1

2 B̂†σxB̂ = 1
2Ĉ†σyĈ (B3)

where Â = (â1
â2

)
, B̂ = (b̂1

b̂2

)
and Ĉ = (ĉ1

ĉ2

)
.

APPENDIX C: CALCULATION OF H (L̂z ) FOR SOME
EXAMPLES OF NON-GAUSSIAN STATES

We compute here the entropy of our two-copy uncertainty
observable L̂z for some examples of non-Gaussian states.

Example 1. Consider the Fock state |1〉. If we insert two
copies of |1〉 in the optical circuit of Fig. 1, we find the state

1√
2

(|0 2〉 − |2 0〉) (C1)

at the output. Therefore, the photon-number difference will be
±2, each with probability 1

2 , and the entropy of L̂z is given by

H (L̂z )|1〉 = −
∑

m

pm ln pm = −1

2
ln

1

2
− 1

2
ln

1

2
= ln 2.

(C2)
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As expected, this value is greater than zero since we are
dealing with a non-Gaussian state, in agreement with our
entropic uncertainty relation (47).

Example 2. Consider now a mixture of |0〉 and |1〉,
ρ = α|0〉〈0| + (1 − α)|1〉〈1|. (C3)

Here we do not use the optical circuit to compute the entropy,
but rather Eq. (46), namely,10

pm =
∞∑

l=|m|
〈〈l, m‖ρ ⊗ ρ‖l, m〉〉. (C4)

Since

ρ ⊗ ρ = α2|00〉〈00| + (1 − α)2|11〉〈11|
+α(1 − α)|01〉〈01| + α(1 − α)|10〉〈10|, (C5)

we only need to consider states ‖l, m〉〉 with l = {0, 1
2 , 1},

which are given in Eqs. (34)-(36). Accordingly, the possible
values of m are {−1,− 1

2 , 0, 1
2 , 1}. We can now compute the

different probabilities pm,

p0 =
1∑

l=0

〈〈l, 0‖ρ ⊗ ρ‖l, 0〉〉

= 〈〈0, 0‖ρ ⊗ ρ‖0, 0〉〉 + 〈〈1, 0‖ρ ⊗ ρ‖1, 0〉〉 = α2,

p±1/2 =
1∑

l=0

〈〈
l,± 1

2

∥∥ρ ⊗ ρ
∥∥l,± 1

2

〉〉

= 〈〈
1
2 ,± 1

2

∥∥ρ ⊗ ρ
∥∥ 1

2 ,± 1
2

〉〉 = α(1 − α),

p±1 =
1∑

l=0

〈〈l,±1‖ρ ⊗ ρ‖l,±1〉〉

= 〈〈1,±1‖ρ ⊗ ρ‖1,±1〉〉 = (1 − α)2

2
(C6)

and the entropy of L̂z is equal to

H (L̂z )ρ = (1 − α)2 ln 2 − 2α ln α − 2(1 − α) ln(1 − α),

(C7)

which is always greater than zero except when α = 1 because
then ρ is simply equal to the vacuum state. If α = 0, we find
H (L̂z )ρ = ln 2 as expected from Example 1.

Note that the Shannon entropy of this mixture is a concave
function of α. This suggests that H (L̂z ) is probably a concave
function in general.

APPENDIX D: DERIVATION OF THE SECOND-ORDER MOMENT OF M̂

To compute the second-order moment of the three-copy observable M̂, we first note that

(Mx + My + Mz )2 = M2
x + M2

y + M2
z + MxMy + MyMx + MxMz + MzMx + MyMz + MzMy, (D1)

with

M2
x + M2

y + M2
z

= 1
4

(
x2

2 p2
1+x2

3 p2
1+x2

1 p2
2+x2

3 p2
2 + x2

1 p2
3 + x2

2 p2
3

) − 1
4 (x1 p1 p2x2 + x2 p2 p3x3 + x3 p3 p1x1 + p1x1x2 p2 + p2x2x3 p3 + p3x3x1 p1)

= 1
4

(
x2

2 p2
1 + x2

3 p2
1 + x2

1 p2
2 + x2

3 p2
2 + x2

1 p2
3 + x2

2 p2
3

) − 1
8 ({x1, p1}{x2, p2} + {x2, p2}{x3, p3} + {x3, p3}{x1, p1})

+ 1
8 ([x1, p1][x2, p2] + [x2, p2][x3, p3] + [x3, p3][x1, p1]) (D2)

and

MxMy + MxMz + MyMz + MyMx + MzMx + MzMy = − 1
2

(
p1 p2x2

3 + p1 p3x2
2 + p2 p3x2

1

)
− 1

2

(
p2

1x2x3 + p2
2x1x3 + p2

3x1x2
) + 1

4

({x1, p1}(x2 p3 + p2x3)

+{x2, p2}(x1 p3 + p1x3) + {x3, p3}(x1 p2 + p1x2)
)
. (D3)

Therefore, if we take the mean value of M̂2 on three copies of the state we obtain

〈〈〈 M̂2 〉〉〉 = 1
3 〈〈〈 (My + Mx + Mz )2 〉〉〉

= 1
12 6〈x2〉〈p2〉 − 1

6 3〈x2〉〈p〉〈p〉 − 1
6 3〈p2〉〈x〉〈x〉 + 1

12 6〈{x, p}〉〈x〉〈p〉 − 1
24 3〈{x, p}〉2 + 1

24 3〈[x, p]〉2

= 1
2

(
det γ + 1

4 〈[x, p]〉2
)
. (D4)

APPENDIX E: EXPRESSION OF M̂x, M̂y, AND M̂z IN TERMS
OF GELL-MANN MATRICES

Another way of defining the three angular momentum
components M̂x, M̂y, and M̂z relies on the Gell-Mann matrices,
which generalize the Pauli matrices in 3 × 3 dimensions.

10Note that there is a slight abuse of notation here since the sum on
l takes half-integer steps, that is, l = {|m|, |m| + 1

2 , |m| + 1, . . .}.

There are eight Gell-Mann matrices, denoted by λi, but we
only need three of them, namely,

Sx ≡ λ7 =
(

0 0 0
0 0 −i
0 i 0

)
, Sy ≡ −λ5 =

(
0 0 i
0 0 0
−i 0 0

)
,

Sz ≡ λ2 =
(

0 −i 0
i 0 0
0 0 0

)
, (E1)
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In analogy with Eqs. (25) and (26), we can write the three
operators M̂i as

M̂x = 1
2 A†SxA, M̂y = 1

2 A†SyA, M̂z = 1
2 A†SzA, (E2)

where we have defined Â = (â1 â2 â3)T . From this for-
mulation, we can easily compute the commutation relations
between the M̂i observables. They almost obey those of an

angular momentum, that is,

[M̂i, M̂ j] = i

2
εi jkM̂k, (E3)

where the 1
2 factor comes from our definition of the M̂i as

already mentioned. All the algebraic properties of operators
M̂x, M̂y, and M̂z should be describable in a unified form based
on (E2) and the properties of the Gell-Mann matrices.
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